����JFIFXX�����    $.' ",#(7),01444'9=82<.342  2!!22222222222222222222222222222222222222222222222222����"��4�� ���,�PG"Z_�4�˷����kjز�Z�,F+��_z�,�© �����zh6�٨�ic�fu���#ډb���_�N�?��wQ���5-�~�I���8����TK<5o�Iv-�����k�_U_�����~b�M��d����Ӝ�U�Hh��?]��E�w��Q���k�{��_}qFW7HTՑ��Y��F�?_�'ϔ��_�Ջt��=||I ��6�έ"�����D���/[�k�9���Y�8ds|\���Ҿp6�Ҵ���]��.����6�z<�v��@]�i%��$j��~�g��J>��no����pM[me�i$[����s�o�ᘨ�˸ nɜG-�ĨU�ycP�3.DB�li�;��hj���x7Z^�N�h������N3u{�:j�x�힞��#M&��jL P@_���� P��&��o8������9�����@Sz6�t7#O�ߋ �s}Yf�T���lmr����Z)'N��k�۞p����w\�Tȯ?�8`�O��i{wﭹW�[�r�� ��Q4F�׊���3m&L�=��h3����z~��#�\�l :�F,j@�� ʱ�wQT����8�"kJO���6�֚l����}���R�>ډK���]��y����&����p�}b��;N�1�m�r$�|��7�>e�@B�TM*-iH��g�D�)� E�m�|�ؘbҗ�a��Ҿ����t4���o���G��*oCN�rP���Q��@z,|?W[0�����:�n,jWiE��W��$~/�hp\��?��{(�0���+�Y8rΟ�+����>S-S����VN;�}�s?.����� w�9��˟<���Mq4�Wv'��{)0�1mB��V����W[�����8�/<� �%���wT^�5���b��)iM� pg�N�&ݝ��VO~�q���u���9� ����!��J27����$O-���! �:�%H��� ـ����y�ΠM=t{!S�� oK8������t<����è:a������[�����ա�H���~��w��Qz`�po�^ ����Q��n� �,uu�C�$ ^���,������8�#��:�6��e�|~���!�3�3.�\0��q��o�4`.|� ����y�Q�`~;�d�ׯ,��O�Zw�������`73�v�܋�<���Ȏ�� ـ4k��5�K�a�u�=9Yd��$>x�A�&�� j0� ���vF��� Y�|�y��� ~�6�@c��1vOp�Ig����4��l�OD���L����� R���c���j�_�uX6��3?nk��Wy�f;^*B� ��@�~a�`��Eu������+���6�L��.ü>��}y���}_�O�6�͐�:�YrG�X��kG�����l^w���~㒶sy��Iu�!� W ��X��N�7BV��O��!X�2����wvG�R�f�T#�����t�/?���%8�^�W�aT��G�cL�M���I��(J����1~�8�?aT ���]����AS�E��(��*E}� 2��#I/�׍qz��^t�̔���b�Yz4x���t�){ OH��+(E��A&�N�������XT��o��"�XC��'���)}�J�z�p� ��~5�}�^����+�6����w��c��Q�|Lp�d�H��}�(�.|����k��c4^�"�����Z?ȕ ��a<�L�!039C� �Eu�C�F�Ew�ç ;�n?�*o���B�8�bʝ���'#Rqf���M}7����]����s2tcS{�\icTx;�\��7K���P���ʇ Z O-��~��c>"��?�������P��E��O�8��@�8��G��Q�g�a�Վ���󁶠�䧘��_%#r�>�1�z�a��eb��qcPѵ��n���#L��� =��׀t� L�7�`��V���A{�C:�g���e@�w1 Xp3�c3�ġ����p��M"'-�@n4���fG��B3�DJ�8[Jo�ߐ���gK)ƛ��$���� ���8�3�����+���� �����6�ʻ���� ���S�kI�*KZlT _`���?��K����QK�d����B`�s}�>���`��*�>��,*@J�d�oF*����弝��O}�k��s��]��y�ߘ��c1G�V���<=�7��7����6�q�PT��tXԀ�!9*4�4Tހ3XΛex�46���Y��D ����� �BdemDa����\�_l,��G�/���֌7���Y�](�xTt^%�GE�����4�}bT���ڹ�����;Y)���B�Q��u��>J/J �⮶.�XԄ��j�ݳ�+E��d ��r�5�_D�1 ��o�� �B�x�΢�#���<��W�����8���R6�@g�M�.��� dr�D��>(otU��@x=��~v���2� ӣ�d�oBd��3�eO�6�㣷�����ݜ6��6Y��Qz`��S��{���\P�~z m5{J/L��1������<�e�ͅPu�b�]�ϔ���'������f�b� Zpw��c`"��i���BD@:)ִ�:�]��hv�E�w���T�l��P���"Ju�}��وV J��G6��. J/�Qgl߭�e�����@�z�Zev2u�)]կ�����7x���s�M�-<ɯ�c��r�v�����@��$�ޮ}lk���a���'����>x��O\�ZFu>�����ck#��&:��`�$�ai�>2Δ����l���oF[h��lE�ܺ�Πk:)���`�� $[6�����9�����kOw�\|���8}������ބ:��񶐕��I�A1/�=�2[�,�!��.}gN#�u����b��� ~��݊��}34q����d�E��Lc��$��"�[q�U�硬g^��%B �z���r�pJ�ru%v\h1Y�ne`ǥ:g���pQM~�^�Xi� ��`S�:V29.�P���V�?B�k�� AEvw%�_�9C�Q����wKekPؠ�\�;Io d�{ ߞo�c1eP����\� `����E=���@K<�Y���eڼ�J���w����{av�F�'�M�@/J��+9p���|]�����Iw &`��8���&M�hg��[�{��Xj��%��Ӓ�$��(����ʹN���<>�I���RY���K2�NPlL�ɀ)��&e����B+ь����( � �JTx���_?EZ� }@ 6�U���뙢ط�z��dWI�n` D����噥�[��uV��"�G&Ú����2g�}&m��?ċ�"����Om#��������� ��{�ON��"S�X��Ne��ysQ���@Fn��Vg���dX�~nj�]J�<�K]:��FW��b�������62�=��5f����JKw��bf�X�55��~J �%^����:�-�QIE��P��v�nZum� z � ~ə ���� ���ة����;�f��\v���g�8�1��f24;�V���ǔ�)����9���1\��c��v�/'Ƞ�w�������$�4�R-��t���� e�6�/�ġ �̕Ecy�J���u�B���<�W�ַ~�w[B1L۲�-JS΂�{���΃������A��20�c#��@ 0!1@AP"#2Q`$3V�%45a6�FRUq��� ����^7ׅ,$n�������+��F�`��2X'��0vM��p�L=������5��8������u�p~���.�`r�����\���O��,ư�0oS ��_�M�����l���4�kv\JSd���x���SW�<��Ae�IX����������$I���w�:S���y���›R��9�Q[���,�5�;�@]�%���u�@ *ro�lbI �� ��+���%m:�͇ZV�����u�̉����θau<�fc�.����{�4Ա� �Q����*�Sm��8\ujqs]{kN���)qO�y�_*dJ�b�7���yQqI&9�ԌK!�M}�R�;������S�T���1���i[U�ɵz�]��U)V�S6���3$K{�ߊ<�(� E]Զ[ǼENg�����'�\?#)Dkf��J���o��v���'�%ƞ�&K�u�!��b�35LX�Ϸ��63$K�a�;�9>,R��W��3�3� d�JeTYE.Mϧ��-�o�j3+y��y^�c�������VO�9NV\nd�1 ��!͕_)a�v;����թ�M�lWR1��)El��P;��yوÏ�u 3�k�5Pr6<�⒲l�!˞*��u־�n�!�l:����UNW ��%��Chx8vL'��X�@��*��)���̮��ˍ��� ���D-M�+J�U�kvK����+�x8��cY������?�Ԡ��~3mo��|�u@[XeY�C�\Kp�x8�oC�C�&����N�~3-H���� ��MX�s�u<`���~"WL��$8ξ��3���a�)|:@�m�\���^�`�@ҷ)�5p+��6���p�%i)P M���ngc�����#0Aruz���RL+xSS?���ʮ}()#�t��mˇ!��0}}y����<�e� �-ή�Ԩ��X������ MF���ԙ~l L.3���}�V뽺�v�����멬��Nl�)�2����^�Iq��a��M��qG��T�����c3#������3U�Ǎ���}��לS�|qa��ڃ�+���-��2�f����/��bz��ڐ�� �ݼ[2�ç����k�X�2�* �Z�d���J�G����M*9W���s{��w���T��x��y,�in�O�v��]���n����P�$�JB@=4�OTI�n��e�22a\����q�d���%�$��(���:���: /*�K[PR�fr\nڙdN���F�n�$�4�[�� U�zƶ����� �mʋ���,�ao�u 3�z� �x��Kn����\[��VFmbE;�_U��&V�Gg�]L�۪&#n%�$ɯ�dG���D�TI=�%+AB�Ru#��b4�1�»x�cs�YzڙJG��f��Il��d�eF'T� iA��T���uC�$����Y��H?����[!G`}���ͪ� �纤Hv\������j�Ex�K���!���OiƸ�Yj�+u-<���'q����uN�*�r\��+�]���<�wOZ.fp�ێ��,-*)V?j-kÊ#�`�r��dV����(�ݽBk�����G�ƛk�QmUڗe��Z���f}|����8�8��a���i��3'J�����~G_�^���d�8w������ R�`(�~�.��u���l�s+g�bv���W���lGc}��u���afE~1�Ue������Z�0�8�=e�� f@/�jqEKQQ�J��oN��J���W5~M>$6�Lt�;$ʳ{���^��6�{����v6���ķܰg�V�cnn �~z�x�«�,2�u�?cE+Ș�H؎�%�Za�)���X>uW�Tz�Nyo����s���FQƤ��$��*�&�LLXL)�1�" L��eO��ɟ�9=���:t��Z���c��Ž���Y?�ӭV�wv�~,Y��r�ۗ�|�y��GaF�����C�����.�+� ���v1���fήJ�����]�S��T��B��n5sW}y�$��~z�'�c ��8 ��� ,! �p��VN�S��N�N�q��y8z˱�A��4��*��'������2n<�s���^ǧ˭P�Jޮɏ�U�G�L�J�*#��<�V��t7�8����TĜ>��i}K%,���)[��z�21z ?�N�i�n1?T�I�R#��m-�����������������1����lA�`��fT5+��ܐ�c�q՝��ʐ��,���3�f2U�եmab��#ŠdQ�y>\��)�SLY����w#��.���ʑ�f��� ,"+�w�~�N�'�c�O�3F�������N<���)j��&��,-� �љ���֊�_�zS���TǦ����w�>��?�������n��U仆�V���e�����0���$�C�d���rP �m�׈e�Xm�Vu� �L��.�bֹ��� �[Դaզ���*��\y�8�Է:�Ez\�0�Kq�C b��̘��cө���Q��=0Y��s�N��S.���3.���O�o:���#���v7�[#߫ ��5�܎�L���Er4���9n��COWlG�^��0k�%<���ZB���aB_���������'=��{i�v�l�$�uC���mƎҝ{�c㱼�y]���W�i ��ߧc��m�H� m�"�"�����;Y�ߝ�Z�Ǔ�����:S#��|}�y�,/k�Ld� TA�(�AI$+I3��;Y*���Z��}|��ӧO��d�v��..#:n��f>�>���ȶI�TX��� 8��y����"d�R�|�)0���=���n4��6ⲑ�+��r<�O�܂~zh�z����7ܓ�HH�Ga롏���nCo�>������a ���~]���R���̲c?�6(�q�;5%� |�uj�~z8R=X��I�V=�|{v�Gj\gc��q����z�؋%M�ߍ����1y��#��@f^���^�>N�����#x#۹��6�Y~�?�dfPO��{��P�4��V��u1E1J �*|���%���JN��`eWu�zk M6���q t[�� ��g�G���v��WIG��u_ft����5�j�"�Y�:T��ɐ���*�;� e5���4����q$C��2d�}���� _S�L#m�Yp��O�.�C�;��c����Hi#֩%+) �Ӎ��ƲV���SYź��g |���tj��3�8���r|���V��1#;.SQ�A[���S������#���`n�+���$��$I �P\[�@�s��(�ED�z���P��])8�G#��0B��[ى��X�II�q<��9�~[Z멜�Z�⊔IWU&A>�P~�#��dp<�?����7���c��'~���5 ��+$���lx@�M�dm��n<=e�dyX��?{�|Aef ,|n3�<~z�ƃ�uۧ�����P��Y,�ӥQ�*g�#먙R�\���;T��i,��[9Qi歉����c>]9�� ��"�c��P�� �Md?٥��If�ت�u��k��/����F��9�c*9��Ǎ:�ØF���z�n*�@|I�ށ9����N3{'��[�'ͬ�Ҳ4��#}��!�V� Fu��,�,mTIk���v C�7v���B�6k�T9��1�*l� '~��ƞF��lU��'�M ����][ΩũJ_�{�i�I�n��$���L�� j��O�dx�����kza۪��#�E��Cl����x˘�o�����V���ɞ�ljr��)�/,�߬h�L��#��^��L�ф�,íMƁe�̩�NB�L�����iL����q�}��(��q��6IçJ$�W�E$��:������=#����(�K�B����zђ <��K(�N�۫K�w��^O{!����)�H���>x�������lx�?>Պ�+�>�W���,Ly!_�D���Ō�l���Q�!�[ �S����J��1��Ɛ�Y}��b,+�Lo�x�ɓ)����=�y�oh�@�꥟/��I��ѭ=��P�y9��� �ۍYӘ�e+�p�Jnϱ?V\SO%�(�t� ���=?MR�[Ș�����d�/ ��n�l��B�7j� ��!�;ӥ�/�[-���A�>�dN�sLj ��,ɪv��=1c�.SQ�O3�U���ƀ�ܽ�E����������̻��9G�ϷD�7(�}��Ävӌ\�y�_0[w ���<΍>����a_��[0+�L��F.�޺��f�>oN�T����q;���y\��bՃ��y�jH�<|q-eɏ�_?_9+P���Hp$�����[ux�K w�Mw��N�ی'$Y2�=��q���KB��P��~������Yul:�[<����F1�2�O���5=d����]Y�sw:���Ϯ���E��j,_Q��X��z`H1,#II ��d�wr��P˂@�ZJV����y$�\y�{}��^~���[:N����ߌ�U�������O��d�����ؾe��${p>G��3c���Ė�lʌ�� ת��[��`ϱ�-W����dg�I��ig2��� ��}s ��ؤ(%#sS@���~���3�X�nRG�~\jc3�v��ӍL��M[JB�T��s3}��j�Nʖ��W����;7��ç?=X�F=-�=����q�ߚ���#���='�c��7���ڑW�I(O+=:uxq�������������e2�zi+�kuG�R��������0�&e�n���iT^J����~\jy���p'dtG��s����O��3����9* �b#Ɋ�� p������[Bws�T�>d4�ۧs���nv�n���U���_�~,�v����ƜJ1��s�� �QIz��)�(lv8M���U=�;����56��G���s#�K���MP�=��LvyGd��}�VwWBF�'�à �?MH�U�g2�� ����!�p�7Q��j��ڴ����=��j�u��� Jn�A s���uM������e��Ɔ�Ҕ�!)'��8Ϣ�ٔ��ޝ(��Vp���צ֖d=�IC�J�Ǡ{q������kԭ�߸���i��@K����u�|�p=..�*+����x�����z[Aqġ#s2a�Ɗ���RR�)*HRsi�~�a &f��M��P����-K�L@��Z��Xy�'x�{}��Zm+���:�)�) IJ�-i�u���� ���ܒH��'�L(7�y�GӜq���� j��� 6ߌg1�g�o���,kر���tY�?W,���p���e���f�OQS��!K�۟cҒA�|ս�j�>��=⬒��˧L[�� �߿2JaB~R��u�:��Q�] �0H~���]�7��Ƽ�I���(}��cq '�ήET���q�?f�ab���ӥvr� �)o��-Q��_'����ᴎo��K������;��V���o��%���~OK ����*��b�f:���-ťIR��`B�5!RB@���ï�� �u �̯e\�_U�_������� g�ES��3�������QT��a����x����U<~�c?�*�#]�MW,[8O�a�x��]�1bC|踤�P��lw5V%�)�{t�<��d��5���0i�XSU��m:��Z�┵�i�"��1�^B�-��P�hJ��&)O��*�D��c�W��vM��)����}���P��ܗ-q����\mmζZ-l@�}��a��E�6��F�@��&Sg@���ݚ�M����� ȹ 4����#p�\H����dYDo�H���"��\��..R�B�H�z_�/5˘����6��KhJR��P�mƶi�m���3�,#c�co��q�a)*Pt����R�m�k�7x�D�E�\Y�閣_X�<���~�)���c[[�BP����6�Yq���S��0����%_����;��Àv�~�| VS؇ ��'O0��F0��\���U�-�d@�����7�SJ*z��3n��y��P����O���������m�~�P�3|Y��ʉr#�C�<�G~�.,! ���bqx���h~0=��!ǫ�jy����l�O,�[B��~��|9��ٱ����Xly�#�i�B��g%�S��������tˋ���e���ې��\[d�t)��.+u�|1 ������#�~Oj����hS�%��i.�~X���I�H�m��0n���c�1uE�q��cF�RF�o���7� �O�ꮧ� ���ۛ{��ʛi5�rw?׌#Qn�TW��~?y$��m\�\o����%W� ?=>S�N@�� �Ʈ���R����N�)�r"C�:��:����� �����#��qb��Y�. �6[��2K����2u�Ǧ�HYR��Q�MV��� �G�$��Q+.>�����nNH��q�^��� ����q��mM��V��D�+�-�#*�U�̒ ���p욳��u:�������IB���m���PV@O���r[b= �� ��1U�E��_Nm�yKbN�O���U�}�the�`�|6֮P>�\2�P�V���I�D�i�P�O;�9�r�mAHG�W�S]��J*�_�G��+kP�2����Ka�Z���H�'K�x�W�MZ%�O�YD�Rc+o��?�q��Ghm��d�S�oh�\�D�|:W������UA�Qc yT�q������~^�H��/��#p�CZ���T�I�1�ӏT����4��"�ČZ�����}��`w�#�*,ʹ�� ��0�i��課�Om�*�da��^gJ݅{���l�e9uF#T�ֲ��̲�ٞC"�q���ߍ ոޑ�o#�XZTp����@ o�8��(jd��xw�]�,f���`~�|,s��^����f�1���t��|��m�򸄭/ctr��5s��7�9Q�4�H1꠲BB@l9@���C�����+�wp�xu�£Yc�9��?`@#�o�mH�s2��)�=��2�.�l����jg�9$�Y�S�%*L������R�Y������7Z���,*=�䷘$�������arm�o�ϰ���UW.|�r�uf����IGw�t����Zwo��~5 ��YյhO+=8fF�)�W�7�L9lM�̘·Y���֘YLf�큹�pRF���99.A �"wz��=E\Z���'a� 2��Ǚ�#;�'}�G���*��l��^"q��+2FQ� hj��kŦ��${���ޮ-�T�٭cf�|�3#~�RJ����t��$b�(R��(����r���dx� >U b�&9,>���%E\� Ά�e�$��'�q't��*�א���ެ�b��-|d���SB�O�O��$�R+�H�)�܎�K��1m`;�J�2�Y~9��O�g8=vqD`K[�F)k�[���1m޼c��n���]s�k�z$@��)!I �x՝"v��9=�ZA=`Ɠi �:�E��)`7��vI��}d�YI�_ �o�:ob���o ���3Q��&D&�2=�� �Ά��;>�h����y.*ⅥS������Ӭ�+q&����j|UƧ����}���J0��WW< ۋS�)jQR�j���Ư��rN)�Gű�4Ѷ(�S)Ǣ�8��i��W52���No˓� ۍ%�5brOn�L�;�n��\G����=�^U�dI���8$�&���h��'���+�(������cȁ߫k�l��S^���cƗjԌE�ꭔ��gF���Ȓ��@���}O���*;e�v�WV���YJ\�]X'5��ղ�k�F��b 6R�o՜m��i N�i����>J����?��lPm�U��}>_Z&�KK��q�r��I�D�Չ~�q�3fL�:S�e>���E���-G���{L�6p�e,8��������QI��h��a�Xa��U�A'���ʂ���s�+טIjP�-��y�8ۈZ?J$��W�P� ��R�s�]��|�l(�ԓ��sƊi��o(��S0��Y� 8�T97.�����WiL��c�~�dxc�E|�2!�X�K�Ƙਫ਼�$((�6�~|d9u+�qd�^3�89��Y�6L�.I�����?���iI�q���9�)O/뚅����O���X��X�V��ZF[�یgQ�L��K1���RҖr@v�#��X�l��F���Нy�S�8�7�kF!A��sM���^rkp�jP�DyS$N���q��nxҍ!U�f�!eh�i�2�m���`�Y�I�9r�6� �TF���C}/�y�^���Η���5d�'��9A-��J��>{�_l+�`��A���[�'��յ�ϛ#w:݅�%��X�}�&�PSt�Q�"�-��\縵�/����$Ɨh�Xb�*�y��BS����;W�ջ_mc�����vt?2}1�;qS�d�d~u:2k5�2�R�~�z+|HE!)�Ǟl��7`��0�<�,�2*���Hl-��x�^����'_TV�gZA�'j� ^�2Ϊ��N7t�����?w�� �x1��f��Iz�C-Ȗ��K�^q�;���-W�DvT�7��8�Z�������� hK�(P:��Q- �8�n�Z���܃e貾�<�1�YT<�,�����"�6{/ �?�͟��|1�:�#g��W�>$����d��J��d�B��=��jf[��%rE^��il:��B���x���Sּ�1հ��,�=��*�7 fcG��#q� �eh?��2�7�����,�!7x��6�n�LC�4x��},Geǝ�tC.��vS �F�43��zz\��;QYC,6����~;RYS/6���|2���5���v��T��i����������mlv��������&� �nRh^ejR�LG�f���? �ۉҬܦƩ��|��Ȱ����>3����!v��i�ʯ�>�v��オ�X3e���_1z�Kȗ\<������!�8���V��]��?b�k41�Re��T�q��mz��TiOʦ�Z��Xq���L������q"+���2ۨ��8}�&N7XU7Ap�d�X��~�׿��&4e�o�F��� �H����O���č�c�� 懴�6���͉��+)��v;j��ݷ�� �UV�� i��� j���Y9GdÒJ1��詞�����V?h��l����l�cGs�ځ�������y�Ac�����\V3�? �� ܙg�>qH�S,�E�W�[�㺨�uch�⍸�O�}���a��>�q�6�n6����N6�q������N ! 1AQaq�0@����"2BRb�#Pr���3C`��Scst���$4D���%Td�� ?���N����a��3��m���C���w��������xA�m�q�m���m������$����4n淿t'��C"w��zU=D�\R+w�p+Y�T�&�պ@��ƃ��3ޯ?�Aﶂ��aŘ���@-�����Q�=���9D��ռ�ѻ@��M�V��P��܅�G5�f�Y<�u=,EC)�<�Fy'�"�&�չ�X~f��l�KԆV��?�� �W�N����=(� �;���{�r����ٌ�Y���h{�١������jW����P���Tc�����X�K�r��}���w�R��%��?���E��m�� �Y�q|����\lEE4���r���}�lsI�Y������f�$�=�d�yO����p�����yBj8jU�o�/�S��?�U��*������ˍ�0������u�q�m [�?f����a�� )Q�>����6#������� ?����0UQ����,IX���(6ڵ[�DI�MNލ�c&���υ�j\��X�R|,4��� j������T�hA�e��^���d���b<����n�� �즇�=!���3�^�`j�h�ȓr��jẕ�c�,ٞX����-����a�ﶔ���#�$��]w�O��Ӫ�1y%��L�Y<�wg#�ǝ�̗`�x�xa�t�w��»1���o7o5��>�m뭛C���Uƃߜ}�C���y1Xνm�F8�jI���]����H���ۺиE@I�i;r�8ӭ����V�F�Շ| ��&?�3|x�B�MuS�Ge�=Ӕ�#BE5G�����Y!z��_e��q�р/W>|-�Ci߇�t�1ޯќd�R3�u��g�=0 5��[?�#͏��q�cf���H��{ ?u�=?�?ǯ���}Z��z���hmΔ�BFTW�����<�q�(v� ��!��z���iW]*�J�V�z��gX֧A�q�&��/w���u�gYӘa���; �i=����g:��?2�dž6�ى�k�4�>�Pxs����}������G�9��3 ���)gG�R<>r h�$��'nc�h�P��Bj��J�ҧH� -��N1���N��?��~��}-q!=��_2hc�M��l�vY%UE�@|�v����M2�.Y[|y�"Eï��K�ZF,�ɯ?,q�?v�M 80jx�"�;�9vk�����+ ֧�� �ȺU��?�%�vcV��mA�6��Qg^M����A}�3�nl� QRN�l8�kkn�'�����(��M�7m9و�q���%ޟ���*h$Zk"��$�9��: �?U8�Sl��,,|ɒ��xH(ѷ����Gn�/Q�4�P��G�%��Ա8�N��!� �&�7�;���eKM7�4��9R/%����l�c>�x;������>��C�:�����t��h?aKX�bhe�ᜋ^�$�Iհ �hr7%F$�E��Fd���t��5���+�(M6�t����Ü�UU|zW�=a�Ts�Tg������dqP�Q����b'�m���1{|Y����X�N��b �P~��F^F:����k6�"�j!�� �I�r�`��1&�-$�Bevk:y���#yw��I0��x��=D�4��tU���P�ZH��ڠ底taP��6����b>�xa����Q�#� WeF��ŮNj�p�J* mQ�N����*I�-*�ȩ�F�g�3 �5��V�ʊ�ɮ�a��5F���O@{���NX��?����H�]3��1�Ri_u��������ѕ�� ����0��� F��~��:60�p�͈�S��qX#a�5>���`�o&+�<2�D����: �������ڝ�$�nP���*)�N�|y�Ej�F�5ټ�e���ihy�Z �>���k�bH�a�v��h�-#���!�Po=@k̆IEN��@��}Ll?j�O������߭�ʞ���Q|A07x���wt!xf���I2?Z��<ץ�T���cU�j��]��陎Ltl �}5�ϓ��$�,��O�mˊ�;�@O��jE��j(�ا,��LX���LO���Ц�90�O �.����a��nA���7������j4 ��W��_ٓ���zW�jcB������y՗+EM�)d���N�g6�y1_x��p�$Lv:��9�"z��p���ʙ$��^��JԼ*�ϭ����o���=x�Lj�6�J��u82�A�H�3$�ٕ@�=Vv�]�'�qEz�;I˼��)��=��ɯ���x �/�W(V���p�����$ �m�������u�����񶤑Oqˎ�T����r��㠚x�sr�GC��byp�G��1ߠ�w e�8�$⿄����/�M{*}��W�]˷.�CK\�ުx���/$�WPw���r� |i���&�}�{�X� �>��$-��l���?-z���g����lΆ���(F���h�vS*���b���߲ڡn,|)mrH[���a�3�ר�[1��3o_�U�3�TC�$��(�=�)0�kgP���� ��u�^=��4 �WYCҸ:��vQ�ר�X�à��tk�m,�t*��^�,�}D*� �"(�I��9R����>`�`��[~Q]�#af��i6l��8���6�:,s�s�N6�j"�A4���IuQ��6E,�GnH��zS�HO�uk�5$�I�4��ؤ�Q9�@��C����wp�BGv[]�u�Ov���0I4���\��y�����Q�Ѹ��~>Z��8�T��a��q�ޣ;z��a���/��S��I:�ܫ_�|������>=Z����8:�S��U�I�J��"IY���8%b8���H��:�QO�6�;7�I�S��J��ҌAά3��>c���E+&jf$eC+�z�;��V����� �r���ʺ������my�e���aQ�f&��6�ND��.:��NT�vm�<- u���ǝ\MvZY�N�NT��-A�>jr!S��n�O 1�3�Ns�%�3D@���`������ܟ 1�^c<���� �a�ɽ�̲�Xë#�w�|y�cW�=�9I*H8�p�^(4���՗�k��arOcW�tO�\�ƍR��8����'�K���I�Q�����?5�>[�}��yU�ײ -h��=��% q�ThG�2�)���"ו3]�!kB��*p�FDl�A���,�eEi�H�f�Ps�����5�H:�Փ~�H�0Dت�D�I����h�F3�������c��2���E��9�H��5�zԑ�ʚ�i�X�=:m�xg�hd(�v����׊�9iS��O��d@0ڽ���:�p�5�h-��t�&���X�q�ӕ,��ie�|���7A�2���O%P��E��htj��Y1��w�Ѓ!����  ���� ࢽ��My�7�\�a�@�ţ�J �4�Ȼ�F�@o�̒?4�wx��)��]�P��~�����u�����5�����7X ��9��^ܩ�U;Iꭆ 5 �������eK2�7(�{|��Y׎ �V��\"���Z�1� Z�����}��(�Ǝ"�1S���_�vE30>���p;� ΝD��%x�W�?W?v����o�^V�i�d��r[��/&>�~`�9Wh��y�;���R��� ;;ɮT��?����r$�g1�K����A��C��c��K��l:�'��3 c�ﳯ*"t8�~l��)���m��+U,z��`(�>yJ�?����h>��]��v��ЍG*�{`��;y]��I�T� ;c��NU�fo¾h���/$���|NS���1�S�"�H��V���T���4��uhǜ�]�v;���5�͠x��'C\�SBpl���h}�N����� A�Bx���%��ޭ�l��/����T��w�ʽ]D�=����K���ž�r㻠l4�S�O?=�k �M:� ��c�C�a�#ha���)�ѐxc�s���gP�iG��{+���x���Q���I= �� z��ԫ+ �8"�k�ñ�j=|����c ��y��CF��/��*9ж�h{ �?4�o� ��k�m�Q�N�x��;�Y��4膚�a�w?�6�>e]�����Q�r�:����g�,i"�����ԩA�*M�<�G��b�if��l^M��5� �Ҩ�{����6J��ZJ�����P�*�����Y���ݛu�_4�9�I8�7���������,^ToR���m4�H��?�N�S�ѕw��/S��甍�@�9H�S�T��t�ƻ���ʒU��*{Xs�@����f�����֒Li�K{H�w^���������Ϥm�tq���s� ���ք��f:��o~s��g�r��ט� �S�ѱC�e]�x���a��) ���(b-$(�j>�7q�B?ӕ�F��hV25r[7 Y� }L�R��}����*sg+��x�r�2�U=�*'WS��ZDW]�WǞ�<��叓���{�$�9Ou4��y�90-�1�'*D`�c�^o?(�9��u���ݐ��'PI&� f�Jݮ�������:wS����jfP1F:X �H�9dԯ���˝[�_54 �}*;@�ܨ�� ð�yn�T���?�ןd�#���4rG�ͨ��H�1�|-#���Mr�S3��G�3�����)�.᧏3v�z֑��r����$G"�`j �1t��x0<Ɔ�Wh6�y�6��,œ�Ga��gA����y��b��)��h�D��ß�_�m��ü �gG;��e�v��ݝ�nQ� ��C����-�*��o���y�a��M��I�>�<���]obD��"�:���G�A��-\%LT�8���c�)��+y76���o�Q�#*{�(F�⽕�y����=���rW�\p���۩�c���A���^e6��K������ʐ�cVf5$�'->���ՉN"���F�"�UQ@�f��Gb~��#�&�M=��8�ט�JNu9��D��[̤�s�o�~������ G��9T�tW^g5y$b��Y'��س�Ǵ�=��U-2 #�MC�t(�i� �lj�@Q 5�̣i�*�O����s�x�K�f��}\��M{E�V�{�υ��Ƈ�����);�H����I��fe�Lȣr�2��>��W�I�Ȃ6������i��k�� �5�YOxȺ����>��Y�f5'��|��H+��98pj�n�.O�y�������jY��~��i�w'������l�;�s�2��Y��:'lg�ꥴ)o#'Sa�a�K��Z� �m��}�`169�n���"���x��I ��*+� }F<��cГ���F�P�������ֹ*�PqX�x۩��,� ��N�� �4<-����%����:��7����W���u�`����� $�?�I��&����o��o��`v�>��P��"��l���4��5'�Z�gE���8���?��[�X�7(��.Q�-��*���ތL@̲����v��.5���[��=�t\+�CNܛ��,g�SQnH����}*F�G16���&:�t��4ُ"A��̣��$�b �|����#rs��a�����T�� ]�<�j��BS�('$�ɻ� �wP;�/�n��?�ݜ��x�F��yUn�~mL*-�������Xf�wd^�a�}��f�,=t�׵i�.2/wpN�Ep8�OР���•��R�FJ� 55TZ��T �ɭ�<��]��/�0�r�@�f��V��V����Nz�G��^���7hZi����k��3�,kN�e|�vg�1{9]_i��X5y7� 8e]�U����'�-2,���e"����]ot�I��Y_��n�(JҼ��1�O ]bXc���Nu�No��pS���Q_���_�?i�~�x h5d'�(qw52] ��'ޤ�q��o1�R!���`ywy�A4u���h<קy���\[~�4�\ X�Wt/� 6�����n�F�a8��f���z �3$�t(���q��q�x��^�XWeN'p<-v�!�{�(>ӽDP7��ո0�y)�e$ٕv�Ih'Q�EA�m*�H��RI��=:��� ���4牢) �%_iN�ݧ�l]� �Nt���G��H�L��� ɱ�g<���1V�,�J~�ٹ�"K��Q�� 9�HS�9�?@��k����r�;we݁�]I�!{ �@�G�[�"��`���J:�n]�{�cA�E����V��ʆ���#��U9�6����j�#Y�m\��q�e4h�B�7��C�������d<�?J����1g:ٳ���=Y���D�p�ц� ׈ǔ��1�]26؜oS�'��9�V�FVu�P�h�9�xc�oq�X��p�o�5��Ա5$�9W�V(�[Ak�aY錎qf;�'�[�|���b�6�Ck��)��#a#a˙��8���=äh�4��2��C��4tm^ �n'c���]GQ$[Wҿ��i���vN�{Fu ��1�gx��1┷���N�m��{j-,��x�� Ūm�ЧS�[�s���Gna���䑴�� x�p 8<������97�Q���ϴ�v�aϚG��Rt�Һ׈�f^\r��WH�JU�7Z���y)�vg=����n��4�_)y��D'y�6�]�c�5̪�\� �PF�k����&�c;��cq�$~T�7j ���nç]�<�g ":�to�t}�159�<�/�8������m�b�K#g'I'.W�����6��I/��>v��\�MN��g���m�A�yQL�4u�Lj�j9��#44�t��l^�}L����n��R��!��t��±]��r��h6ٍ>�yҏ�N��fU�� ���� Fm@�8}�/u��jb9������he:A�y�ծw��GpΧh�5����l}�3p468��)U��d��c����;Us/�֔�YX�1�O2��uq�s��`hwg�r~�{ R��mhN��؎*q 42�*th��>�#���E����#��Hv�O����q�}�����6�e��\�,Wk�#���X��b>��p}�դ��3���T5��†��6��[��@�P�y*n��|'f�֧>�lư΂�̺����SU�'*�q�p�_S�����M�� '��c�6�����m�� ySʨ;M��r���Ƌ�m�Kxo,���Gm�P��A�G�:��i��w�9�}M(�^�V��$ǒ�ѽ�9���|���� �a����J�SQ�a���r�B;����}���ٻ֢�2�%U���c�#�g���N�a�ݕ�'�v�[�OY'��3L�3�;,p�]@�S��{ls��X�'���c�jw�k'a�.��}�}&�� �dP�*�bK=ɍ!����;3n�gΊU�ߴmt�'*{,=SzfD� A��ko~�G�aoq�_mi}#�m�������P�Xhύ����mxǍ�΂���巿zf��Q���c���|kc�����?���W��Y�$���_Lv����l߶��c���`?����l�j�ݲˏ!V��6����U�Ђ(A���4y)H���p�Z_�x��>���e��R��$�/�`^'3qˏ�-&Q�=?��CFVR �D�fV�9��{�8g�������n�h�(P"��6�[�D���< E�����~0<@�`�G�6����Hг�cc�� �c�K.5��D��d�B���`?�XQ��2��ٿyqo&+�1^� DW�0�ꊩ���G�#��Q�nL3��c���������/��x ��1�1[y�x�პCW��C�c�UĨ80�m�e�4.{�m��u���I=��f�����0QRls9���f���������9���~f�����Ǩ��a�"@�8���ȁ�Q����#c�ic������G��$���G���r/$W�(��W���V�"��m�7�[m�A�m����bo��D� j����۳� l���^�k�h׽����� ��#� iXn�v��eT�k�a�^Y�4�BN��ĕ��0 !01@Q"2AaPq3BR������?���@4�Q�����T3,���㺠�W�[=JK�Ϟ���2�r^7��vc�:�9 �E�ߴ�w�S#d���Ix��u��:��Hp��9E!�� V 2;73|F��9Y���*ʬ�F��D����u&���y؟��^EA��A��(ɩ���^��GV:ݜDy�`��Jr29ܾ�㝉��[���E;Fzx��YG��U�e�Y�C���� ����v-tx����I�sם�Ę�q��Eb�+P\ :>�i�C'�;�����k|z�رn�y]�#ǿb��Q��������w�����(�r|ӹs��[�D��2v-%��@;�8<a���[\o[ϧw��I!��*0�krs)�[�J9^��ʜ��p1)� "��/_>��o��<1����A�E�y^�C��`�x1'ܣn�p��s`l���fQ��):�l����b>�Me�jH^?�kl3(�z:���1ŠK&?Q�~�{�ٺ�h�y���/�[��V�|6��}�KbX����mn[-��7�5q�94�������dm���c^���h� X��5��<�eޘ>G���-�}�دB�ޟ� ��|�rt�M��V+�]�c?�-#ڛ��^ǂ}���Lkr���O��u�>�-D�ry� D?:ޞ�U��ǜ�7�V��?瓮�"�#���r��չģVR;�n���/_� ؉v�ݶe5d�b9��/O��009�G���5n�W����JpA�*�r9�>�1��.[t���s�F���nQ� V 77R�]�ɫ8����_0<՜�IF�u(v��4��F�k�3��E)��N:��yڮe��P�`�1}�$WS��J�SQ�N�j�ٺ��޵�#l���ј(�5=��5�lǏmoW�v-�1����v,W�mn��߀$x�<����v�j(����c]��@#��1������Ǔ���o'��u+����;G�#�޸��v-lη��/(`i⣍Pm^���ԯ̾9Z��F��������n��1��� ��]�[��)�'������:�֪�W��FC����� �B9،!?���]��V��A�Վ�M��b�w��G F>_DȬ0¤�#�QR�[V��kz���m�w�"��9ZG�7'[��=�Q����j8R?�zf�\a�=��O�U����*oB�A�|G���2�54 �p��.w7� �� ��&������ξxGHp� B%��$g�����t�Џ򤵍z���HN�u�Я�-�'4��0��;_��3 !01"@AQa2Pq#3BR������?��ʩca��en��^��8���<�u#��m*08r��y�N"�<�Ѳ0��@\�p��� �����Kv�D��J8�Fҽ� �f�Y��-m�ybX�NP����}�!*8t(�OqѢ��Q�wW�K��ZD��Δ^e��!� ��B�K��p~�����e*l}z#9ң�k���q#�Ft�o��S�R����-�w�!�S���Ӥß|M�l޶V��!eˈ�8Y���c�ЮM2��tk���� ������J�fS����Ö*i/2�����n]�k�\���|4yX�8��U�P.���Ы[���l��@"�t�<������5�lF���vU�����W��W��;�b�cД^6[#7@vU�xgZv��F�6��Q,K�v��� �+Ъ��n��Ǣ��Ft���8��0��c�@�!�Zq s�v�t�;#](B��-�nῃ~���3g������5�J�%���O������n�kB�ĺ�.r��+���#�N$?�q�/�s�6��p��a����a��J/��M�8��6�ܰ"�*������ɗud"\w���aT(����[��F��U՛����RT�b���n�*��6���O��SJ�.�ij<�v�MT��R\c��5l�sZB>F��<7�;EA��{��E���Ö��1U/�#��d1�a�n.1ě����0�ʾR�h��|�R��Ao�3�m3 ��%�� ���28Q� ��y��φ���H�To�7�lW>����#i`�q���c����a��� �m,B�-j����݋�'mR1Ήt�>��V��p���s�0IbI�C.���1R�ea�����]H�6����������4B>��o��](��$B���m�����a�!=��?�B� K�Ǿ+�Ծ"�n���K��*��+��[T#�{E�J�S����Q�����s�5�:�U�\wĐ�f�3����܆&�)����I���Ԇw��E T�lrTf6Q|R�h:��[K�� �z��c֧�G�C��%\��_�a�84��HcO�bi��ؖV��7H �)*ģK~Xhչ0��4?�0��� �E<���}3���#���u�?�� ��|g�S�6ꊤ�|�I#Hڛ� �ա��w�X��9��7���Ŀ%�SL��y6č��|�F�a 8���b��$�sק�h���b9RAu7�˨p�Č�_\*w��묦��F ����4D~�f����|(�"m���NK��i�S�>�$d7SlA��/�²����SL��|6N�}���S�˯���g��]6��; �#�.��<���q'Q�1|KQ$�����񛩶"�$r�b:���N8�w@��8$�� �AjfG|~�9F ���Y��ʺ��Bwؒ������M:I岎�G��`s�YV5����6��A �b:�W���G�q%l�����F��H���7�������Fsv7��k�� 403WebShell
403Webshell
Server IP : 97.74.90.209  /  Your IP : 216.73.216.74
Web Server : Apache
System : Linux live.indianstaffingfederation.org 4.18.0-553.54.1.el8_10.x86_64 #1 SMP Tue May 27 22:49:52 EDT 2025 x86_64
User : indianstaffing ( 1003)
PHP Version : 8.3.22
Disable Function : exec,passthru,shell_exec,system
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : ON  |  Pkexec : ON
Directory :  /var/opt/nydus/ops/mysql/opentelemetry/sdk/metrics/_internal/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /var/opt/nydus/ops/mysql/opentelemetry/sdk/metrics/_internal/aggregation.py
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# pylint: disable=too-many-lines

from abc import ABC, abstractmethod
from bisect import bisect_left
from enum import IntEnum
from logging import getLogger
from math import inf
from threading import Lock
from typing import Generic, List, Optional, Sequence, TypeVar

from mysql.opentelemetry.metrics import (
    Asynchronous,
    Counter,
    Histogram,
    Instrument,
    ObservableCounter,
    ObservableGauge,
    ObservableUpDownCounter,
    Synchronous,
    UpDownCounter,
)
from mysql.opentelemetry.sdk.metrics._internal.exponential_histogram.buckets import (
    Buckets,
)
from mysql.opentelemetry.sdk.metrics._internal.exponential_histogram.mapping.exponent_mapping import (
    ExponentMapping,
)
from mysql.opentelemetry.sdk.metrics._internal.exponential_histogram.mapping.logarithm_mapping import (
    LogarithmMapping,
)
from mysql.opentelemetry.sdk.metrics._internal.measurement import Measurement
from mysql.opentelemetry.sdk.metrics._internal.point import (
    Buckets as BucketsPoint,
    ExponentialHistogramDataPoint,
    Gauge,
    Histogram as HistogramPoint,
    HistogramDataPoint,
    NumberDataPoint,
    Sum,
)
from mysql.opentelemetry.util.types import Attributes

_DataPointVarT = TypeVar("_DataPointVarT", NumberDataPoint, HistogramDataPoint)

_logger = getLogger(__name__)


class AggregationTemporality(IntEnum):
    """
    The temporality to use when aggregating data.

    Can be one of the following values:
    """

    UNSPECIFIED = 0
    DELTA = 1
    CUMULATIVE = 2


class _Aggregation(ABC, Generic[_DataPointVarT]):
    def __init__(self, attributes: Attributes):
        self._lock = Lock()
        self._attributes = attributes
        self._previous_point = None

    @abstractmethod
    def aggregate(self, measurement: Measurement) -> None:
        pass

    @abstractmethod
    def collect(
        self,
        aggregation_temporality: AggregationTemporality,
        collection_start_nano: int,
    ) -> Optional[_DataPointVarT]:
        pass


class _DropAggregation(_Aggregation):
    def aggregate(self, measurement: Measurement) -> None:
        pass

    def collect(
        self,
        aggregation_temporality: AggregationTemporality,
        collection_start_nano: int,
    ) -> Optional[_DataPointVarT]:
        pass


class _SumAggregation(_Aggregation[Sum]):
    def __init__(
        self,
        attributes: Attributes,
        instrument_is_monotonic: bool,
        instrument_temporality: AggregationTemporality,
        start_time_unix_nano: int,
    ):
        super().__init__(attributes)

        self._start_time_unix_nano = start_time_unix_nano
        self._instrument_temporality = instrument_temporality
        self._instrument_is_monotonic = instrument_is_monotonic

        if self._instrument_temporality is AggregationTemporality.DELTA:
            self._value = 0
        else:
            self._value = None

    def aggregate(self, measurement: Measurement) -> None:
        with self._lock:
            if self._value is None:
                self._value = 0
            self._value = self._value + measurement.value

    def collect(
        self,
        aggregation_temporality: AggregationTemporality,
        collection_start_nano: int,
    ) -> Optional[NumberDataPoint]:
        """
        Atomically return a point for the current value of the metric and
        reset the aggregation value.
        """
        if self._instrument_temporality is AggregationTemporality.DELTA:
            with self._lock:
                value = self._value
                start_time_unix_nano = self._start_time_unix_nano

                self._value = 0
                self._start_time_unix_nano = collection_start_nano

        else:
            with self._lock:
                if self._value is None:
                    return None
                value = self._value
                self._value = None
                start_time_unix_nano = self._start_time_unix_nano

        current_point = NumberDataPoint(
            attributes=self._attributes,
            start_time_unix_nano=start_time_unix_nano,
            time_unix_nano=collection_start_nano,
            value=value,
        )

        if self._previous_point is None or (
            self._instrument_temporality is aggregation_temporality
        ):
            # Output DELTA for a synchronous instrument
            # Output CUMULATIVE for an asynchronous instrument
            self._previous_point = current_point
            return current_point

        if aggregation_temporality is AggregationTemporality.DELTA:
            # Output temporality DELTA for an asynchronous instrument
            value = current_point.value - self._previous_point.value
            output_start_time_unix_nano = self._previous_point.time_unix_nano

        else:
            # Output CUMULATIVE for a synchronous instrument
            value = current_point.value + self._previous_point.value
            output_start_time_unix_nano = self._previous_point.start_time_unix_nano

        current_point = NumberDataPoint(
            attributes=self._attributes,
            start_time_unix_nano=output_start_time_unix_nano,
            time_unix_nano=current_point.time_unix_nano,
            value=value,
        )

        self._previous_point = current_point
        return current_point


class _LastValueAggregation(_Aggregation[Gauge]):
    def __init__(self, attributes: Attributes):
        super().__init__(attributes)
        self._value = None

    def aggregate(self, measurement: Measurement):
        with self._lock:
            self._value = measurement.value

    def collect(
        self,
        aggregation_temporality: AggregationTemporality,
        collection_start_nano: int,
    ) -> Optional[_DataPointVarT]:
        """
        Atomically return a point for the current value of the metric.
        """
        with self._lock:
            if self._value is None:
                return None
            value = self._value
            self._value = None

        return NumberDataPoint(
            attributes=self._attributes,
            start_time_unix_nano=0,
            time_unix_nano=collection_start_nano,
            value=value,
        )


class _ExplicitBucketHistogramAggregation(_Aggregation[HistogramPoint]):
    def __init__(
        self,
        attributes: Attributes,
        start_time_unix_nano: int,
        boundaries: Sequence[float] = (
            0.0,
            5.0,
            10.0,
            25.0,
            50.0,
            75.0,
            100.0,
            250.0,
            500.0,
            750.0,
            1000.0,
            2500.0,
            5000.0,
            7500.0,
            10000.0,
        ),
        record_min_max: bool = True,
    ):
        super().__init__(attributes)
        self._boundaries = tuple(boundaries)
        self._bucket_counts = self._get_empty_bucket_counts()
        self._min = inf
        self._max = -inf
        self._sum = 0
        self._record_min_max = record_min_max
        self._start_time_unix_nano = start_time_unix_nano
        # It is assumed that the "natural" aggregation temporality for a
        # Histogram instrument is DELTA, like the "natural" aggregation
        # temporality for a Counter is DELTA and the "natural" aggregation
        # temporality for an ObservableCounter is CUMULATIVE.
        self._instrument_temporality = AggregationTemporality.DELTA

    def _get_empty_bucket_counts(self) -> List[int]:
        return [0] * (len(self._boundaries) + 1)

    def aggregate(self, measurement: Measurement) -> None:
        value = measurement.value

        if self._record_min_max:
            self._min = min(self._min, value)
            self._max = max(self._max, value)

        self._sum += value

        self._bucket_counts[bisect_left(self._boundaries, value)] += 1

    def collect(
        self,
        aggregation_temporality: AggregationTemporality,
        collection_start_nano: int,
    ) -> Optional[_DataPointVarT]:
        """
        Atomically return a point for the current value of the metric.
        """
        with self._lock:
            if not any(self._bucket_counts):
                return None

            bucket_counts = self._bucket_counts
            start_time_unix_nano = self._start_time_unix_nano
            sum_ = self._sum
            max_ = self._max
            min_ = self._min

            self._bucket_counts = self._get_empty_bucket_counts()
            self._start_time_unix_nano = collection_start_nano
            self._sum = 0
            self._min = inf
            self._max = -inf

        current_point = HistogramDataPoint(
            attributes=self._attributes,
            start_time_unix_nano=start_time_unix_nano,
            time_unix_nano=collection_start_nano,
            count=sum(bucket_counts),
            sum=sum_,
            bucket_counts=tuple(bucket_counts),
            explicit_bounds=self._boundaries,
            min=min_,
            max=max_,
        )

        if self._previous_point is None or (
            self._instrument_temporality is aggregation_temporality
        ):
            self._previous_point = current_point
            return current_point

        max_ = current_point.max
        min_ = current_point.min

        if aggregation_temporality is AggregationTemporality.CUMULATIVE:
            start_time_unix_nano = self._previous_point.start_time_unix_nano
            sum_ = current_point.sum + self._previous_point.sum
            # Only update min/max on delta -> cumulative
            max_ = max(current_point.max, self._previous_point.max)
            min_ = min(current_point.min, self._previous_point.min)
            bucket_counts = [
                curr_count + prev_count
                for curr_count, prev_count in zip(
                    current_point.bucket_counts,
                    self._previous_point.bucket_counts,
                )
            ]
        else:
            start_time_unix_nano = self._previous_point.time_unix_nano
            sum_ = current_point.sum - self._previous_point.sum
            bucket_counts = [
                curr_count - prev_count
                for curr_count, prev_count in zip(
                    current_point.bucket_counts,
                    self._previous_point.bucket_counts,
                )
            ]

        current_point = HistogramDataPoint(
            attributes=self._attributes,
            start_time_unix_nano=start_time_unix_nano,
            time_unix_nano=current_point.time_unix_nano,
            count=sum(bucket_counts),
            sum=sum_,
            bucket_counts=tuple(bucket_counts),
            explicit_bounds=current_point.explicit_bounds,
            min=min_,
            max=max_,
        )
        self._previous_point = current_point
        return current_point


# pylint: disable=protected-access
class _ExponentialBucketHistogramAggregation(_Aggregation[HistogramPoint]):
    # _min_max_size and _max_max_size are the smallest and largest values
    # the max_size parameter may have, respectively.

    # _min_max_size is is the smallest reasonable value which is small enough
    # to contain the entire normal floating point range at the minimum scale.
    _min_max_size = 2

    # _max_max_size is an arbitrary limit meant to limit accidental creation of
    # giant exponential bucket histograms.
    _max_max_size = 16384

    def __init__(
        self,
        attributes: Attributes,
        start_time_unix_nano: int,
        # This is the default maximum number of buckets per positive or
        # negative number range.  The value 160 is specified by mysql.OpenTelemetry.
        # See the derivation here:
        # https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/metrics/sdk.md#exponential-bucket-histogram-aggregation)
        max_size: int = 160,
    ):
        super().__init__(attributes)
        # max_size is the maximum capacity of the positive and negative
        # buckets.
        if max_size < self._min_max_size:
            raise ValueError(
                f"Buckets max size {max_size} is smaller than "
                "minimum max size {self._min_max_size}"
            )

        if max_size > self._max_max_size:
            raise ValueError(
                f"Buckets max size {max_size} is larger than "
                "maximum max size {self._max_max_size}"
            )

        self._max_size = max_size

        # _sum is the sum of all the values aggregated by this aggregator.
        self._sum = 0

        # _count is the count of all calls to aggregate.
        self._count = 0

        # _zero_count is the count of all the calls to aggregate when the value
        # to be aggregated is exactly 0.
        self._zero_count = 0

        # _min is the smallest value aggregated by this aggregator.
        self._min = inf

        # _max is the smallest value aggregated by this aggregator.
        self._max = -inf

        # _positive holds the positive values.
        self._positive = Buckets()

        # _negative holds the negative values by their absolute value.
        self._negative = Buckets()

        # _mapping corresponds to the current scale, is shared by both the
        # positive and negative buckets.
        self._mapping = LogarithmMapping(LogarithmMapping._max_scale)

        self._instrument_temporality = AggregationTemporality.DELTA
        self._start_time_unix_nano = start_time_unix_nano

        self._previous_scale = None
        self._previous_start_time_unix_nano = None
        self._previous_sum = None
        self._previous_max = None
        self._previous_min = None
        self._previous_positive = None
        self._previous_negative = None

    def aggregate(self, measurement: Measurement) -> None:
        # pylint: disable=too-many-branches,too-many-statements, too-many-locals

        with self._lock:
            value = measurement.value

            # 0. Set the following attributes:
            # _min
            # _max
            # _count
            # _zero_count
            # _sum
            if value < self._min:
                self._min = value

            if value > self._max:
                self._max = value

            self._count += 1

            if value == 0:
                self._zero_count += 1
                # No need to do anything else if value is zero, just increment the
                # zero count.
                return

            self._sum += value

            # 1. Use the positive buckets for positive values and the negative
            # buckets for negative values.
            if value > 0:
                buckets = self._positive

            else:
                # Both exponential and logarithm mappings use only positive values
                # so the absolute value is used here.
                value = -value
                buckets = self._negative

            # 2. Compute the index for the value at the current scale.
            index = self._mapping.map_to_index(value)

            # IncrementIndexBy starts here

            # 3. Determine if a change of scale is needed.
            is_rescaling_needed = False

            if len(buckets) == 0:
                buckets.index_start = index
                buckets.index_end = index
                buckets.index_base = index

            elif (
                index < buckets.index_start
                and (buckets.index_end - index) >= self._max_size
            ):
                is_rescaling_needed = True
                low = index
                high = buckets.index_end

            elif (
                index > buckets.index_end
                and (index - buckets.index_start) >= self._max_size
            ):
                is_rescaling_needed = True
                low = buckets.index_start
                high = index

            # 4. Rescale the mapping if needed.
            if is_rescaling_needed:
                self._downscale(
                    self._get_scale_change(low, high),
                    self._positive,
                    self._negative,
                )

                index = self._mapping.map_to_index(value)

            # 5. If the index is outside
            # [buckets.index_start, buckets.index_end] readjust the buckets
            # boundaries or add more buckets.
            if index < buckets.index_start:
                span = buckets.index_end - index

                if span >= len(buckets.counts):
                    buckets.grow(span + 1, self._max_size)

                buckets.index_start = index

            elif index > buckets.index_end:
                span = index - buckets.index_start

                if span >= len(buckets.counts):
                    buckets.grow(span + 1, self._max_size)

                buckets.index_end = index

            # 6. Compute the index of the bucket to be incremented.
            bucket_index = index - buckets.index_base

            if bucket_index < 0:
                bucket_index += len(buckets.counts)

            # 7. Increment the bucket.
            buckets.increment_bucket(bucket_index)

    def collect(
        self,
        aggregation_temporality: AggregationTemporality,
        collection_start_nano: int,
    ) -> Optional[_DataPointVarT]:
        """
        Atomically return a point for the current value of the metric.
        """
        # pylint: disable=too-many-statements, too-many-locals

        with self._lock:
            if self._count == 0:
                return None

            current_negative = self._negative
            current_positive = self._positive
            current_zero_count = self._zero_count
            current_count = self._count
            current_start_time_unix_nano = self._start_time_unix_nano
            current_sum = self._sum
            current_max = self._max
            if current_max == -inf:
                current_max = None
            current_min = self._min
            if current_min == inf:
                current_min = None

            if self._count == self._zero_count:
                current_scale = 0

            else:
                current_scale = self._mapping.scale

            self._negative = Buckets()
            self._positive = Buckets()
            self._start_time_unix_nano = collection_start_nano
            self._sum = 0
            self._count = 0
            self._zero_count = 0
            self._min = inf
            self._max = -inf

            current_point = ExponentialHistogramDataPoint(
                attributes=self._attributes,
                start_time_unix_nano=current_start_time_unix_nano,
                time_unix_nano=collection_start_nano,
                count=current_count,
                sum=current_sum,
                scale=current_scale,
                zero_count=current_zero_count,
                positive=BucketsPoint(
                    offset=current_positive.offset,
                    bucket_counts=current_positive.counts,
                ),
                negative=BucketsPoint(
                    offset=current_negative.offset,
                    bucket_counts=current_negative.counts,
                ),
                # FIXME: Find the right value for flags
                flags=0,
                min=current_min,
                max=current_max,
            )

            if self._previous_scale is None or (
                self._instrument_temporality is aggregation_temporality
            ):
                self._previous_scale = current_scale
                self._previous_start_time_unix_nano = current_start_time_unix_nano
                self._previous_max = current_max
                self._previous_min = current_min
                self._previous_sum = current_sum
                self._previous_positive = current_positive
                self._previous_negative = current_negative

                return current_point

            min_scale = min(self._previous_scale, current_scale)

            low_positive, high_positive = self._get_low_high_previous_current(
                self._previous_positive, current_positive, min_scale
            )
            low_negative, high_negative = self._get_low_high_previous_current(
                self._previous_negative, current_negative, min_scale
            )

            min_scale = min(
                min_scale - self._get_scale_change(low_positive, high_positive),
                min_scale - self._get_scale_change(low_negative, high_negative),
            )

            # FIXME Go implementation checks if the histogram (not the mapping
            # but the histogram) has a count larger than zero, if not, scale
            # (the histogram scale) would be zero. See exponential.go 191
            self._downscale(
                self._mapping.scale - min_scale,
                self._previous_positive,
                self._previous_negative,
            )

            if aggregation_temporality is AggregationTemporality.CUMULATIVE:
                start_time_unix_nano = self._previous_start_time_unix_nano
                sum_ = current_sum + self._previous_sum
                # Only update min/max on delta -> cumulative
                max_ = max(current_max, self._previous_max)
                min_ = min(current_min, self._previous_min)

                self._merge(
                    self._previous_positive,
                    current_positive,
                    current_scale,
                    min_scale,
                    aggregation_temporality,
                )
                self._merge(
                    self._previous_negative,
                    current_negative,
                    current_scale,
                    min_scale,
                    aggregation_temporality,
                )

            else:
                start_time_unix_nano = self._previous_start_time_unix_nano
                sum_ = current_sum - self._previous_sum
                max_ = current_max
                min_ = current_min

                self._merge(
                    self._previous_positive,
                    current_positive,
                    current_scale,
                    min_scale,
                    aggregation_temporality,
                )
                self._merge(
                    self._previous_negative,
                    current_negative,
                    current_scale,
                    min_scale,
                    aggregation_temporality,
                )

            current_point = ExponentialHistogramDataPoint(
                attributes=self._attributes,
                start_time_unix_nano=start_time_unix_nano,
                time_unix_nano=collection_start_nano,
                count=current_count,
                sum=sum_,
                scale=current_scale,
                zero_count=current_zero_count,
                positive=BucketsPoint(
                    offset=current_positive.offset,
                    bucket_counts=current_positive.counts,
                ),
                negative=BucketsPoint(
                    offset=current_negative.offset,
                    bucket_counts=current_negative.counts,
                ),
                # FIXME: Find the right value for flags
                flags=0,
                min=min_,
                max=max_,
            )

            self._previous_scale = current_scale
            self._previous_positive = current_positive
            self._previous_negative = current_negative
            self._previous_start_time_unix_nano = current_start_time_unix_nano
            self._previous_sum = current_sum

            return current_point

    def _get_low_high_previous_current(
        self, previous_point_buckets, current_point_buckets, min_scale
    ):
        (previous_point_low, previous_point_high) = self._get_low_high(
            previous_point_buckets, min_scale
        )
        (current_point_low, current_point_high) = self._get_low_high(
            current_point_buckets, min_scale
        )

        if current_point_low > current_point_high:
            low = previous_point_low
            high = previous_point_high

        elif previous_point_low > previous_point_high:
            low = current_point_low
            high = current_point_high

        else:
            low = min(previous_point_low, current_point_low)
            high = max(previous_point_high, current_point_high)

        return low, high

    def _get_low_high(self, buckets, min_scale):
        if buckets.counts == [0]:
            return 0, -1

        shift = self._mapping._scale - min_scale

        return buckets.index_start >> shift, buckets.index_end >> shift

    def _get_scale_change(self, low, high):
        change = 0

        while high - low >= self._max_size:
            high = high >> 1
            low = low >> 1

            change += 1

        return change

    def _downscale(self, change: int, positive, negative):
        if change == 0:
            return

        if change < 0:
            raise Exception("Invalid change of scale")

        new_scale = self._mapping.scale - change

        positive.downscale(change)
        negative.downscale(change)

        if new_scale <= 0:
            mapping = ExponentMapping(new_scale)
        else:
            mapping = LogarithmMapping(new_scale)

        self._mapping = mapping

    def _merge(
        self,
        previous_buckets,
        current_buckets,
        current_scale,
        min_scale,
        aggregation_temporality,
    ):
        current_change = current_scale - min_scale

        for current_bucket_index, current_bucket in enumerate(current_buckets.counts):
            if current_bucket == 0:
                continue

            # Not considering the case where len(previous_buckets) == 0. This
            # would not happen because self._previous_point is only assigned to
            # an ExponentialHistogramDataPoint object if self._count != 0.

            index = (current_buckets.offset + current_bucket_index) >> current_change

            if index < previous_buckets.index_start:
                span = previous_buckets.index_end - index

                if span >= self._max_size:
                    raise Exception("Incorrect merge scale")

                if span >= len(previous_buckets.counts):
                    previous_buckets.grow(span + 1, self._max_size)

                previous_buckets.index_start = index

            if index > previous_buckets.index_end:
                span = index - previous_buckets.index_end

                if span >= self._max_size:
                    raise Exception("Incorrect merge scale")

                if span >= len(previous_buckets.counts):
                    previous_buckets.grow(span + 1, self._max_size)

                previous_buckets.index_end = index

            bucket_index = index - previous_buckets.index_base

            if bucket_index < 0:
                bucket_index += len(previous_buckets.counts)

            if aggregation_temporality is AggregationTemporality.DELTA:
                current_bucket = -current_bucket

            previous_buckets.increment_bucket(bucket_index, increment=current_bucket)


class Aggregation(ABC):
    """
    Base class for all aggregation types.
    """

    @abstractmethod
    def _create_aggregation(
        self,
        instrument: Instrument,
        attributes: Attributes,
        start_time_unix_nano: int,
    ) -> _Aggregation:
        """Creates an aggregation"""


class DefaultAggregation(Aggregation):
    """
    The default aggregation to be used in a `View`.

    This aggregation will create an actual aggregation depending on the
    instrument type, as specified next:

    ==================================================== ====================================
    Instrument                                           Aggregation
    ==================================================== ====================================
    `mysql.opentelemetry.sdk.metrics.Counter`                  `SumAggregation`
    `mysql.opentelemetry.sdk.metrics.UpDownCounter`            `SumAggregation`
    `mysql.opentelemetry.sdk.metrics.ObservableCounter`        `SumAggregation`
    `mysql.opentelemetry.sdk.metrics.ObservableUpDownCounter`  `SumAggregation`
    `mysql.opentelemetry.sdk.metrics.Histogram`                `ExplicitBucketHistogramAggregation`
    `mysql.opentelemetry.sdk.metrics.ObservableGauge`          `LastValueAggregation`
    ==================================================== ====================================
    """

    def _create_aggregation(
        self,
        instrument: Instrument,
        attributes: Attributes,
        start_time_unix_nano: int,
    ) -> _Aggregation:
        # pylint: disable=too-many-return-statements
        if isinstance(instrument, Counter):
            return _SumAggregation(
                attributes,
                instrument_is_monotonic=True,
                instrument_temporality=AggregationTemporality.DELTA,
                start_time_unix_nano=start_time_unix_nano,
            )
        if isinstance(instrument, UpDownCounter):
            return _SumAggregation(
                attributes,
                instrument_is_monotonic=False,
                instrument_temporality=AggregationTemporality.DELTA,
                start_time_unix_nano=start_time_unix_nano,
            )

        if isinstance(instrument, ObservableCounter):
            return _SumAggregation(
                attributes,
                instrument_is_monotonic=True,
                instrument_temporality=AggregationTemporality.CUMULATIVE,
                start_time_unix_nano=start_time_unix_nano,
            )

        if isinstance(instrument, ObservableUpDownCounter):
            return _SumAggregation(
                attributes,
                instrument_is_monotonic=False,
                instrument_temporality=AggregationTemporality.CUMULATIVE,
                start_time_unix_nano=start_time_unix_nano,
            )

        if isinstance(instrument, Histogram):
            return _ExplicitBucketHistogramAggregation(attributes, start_time_unix_nano)

        if isinstance(instrument, ObservableGauge):
            return _LastValueAggregation(attributes)

        raise Exception(f"Invalid instrument type {type(instrument)} found")


class ExponentialBucketHistogramAggregation(Aggregation):
    def __init__(
        self,
        max_size: int = 160,
    ):
        self._max_size = max_size

    def _create_aggregation(
        self,
        instrument: Instrument,
        attributes: Attributes,
        start_time_unix_nano: int,
    ) -> _Aggregation:
        return _ExponentialBucketHistogramAggregation(
            attributes,
            start_time_unix_nano,
            max_size=self._max_size,
        )


class ExplicitBucketHistogramAggregation(Aggregation):
    """This aggregation informs the SDK to collect:

    - Count of Measurement values falling within explicit bucket boundaries.
    - Arithmetic sum of Measurement values in population. This SHOULD NOT be collected when used with instruments that record negative measurements, e.g. UpDownCounter or ObservableGauge.
    - Min (optional) Measurement value in population.
    - Max (optional) Measurement value in population.


    Args:
        boundaries: Array of increasing values representing explicit bucket boundary values.
        record_min_max: Whether to record min and max.
    """

    def __init__(
        self,
        boundaries: Sequence[float] = (
            0.0,
            5.0,
            10.0,
            25.0,
            50.0,
            75.0,
            100.0,
            250.0,
            500.0,
            750.0,
            1000.0,
            2500.0,
            5000.0,
            7500.0,
            10000.0,
        ),
        record_min_max: bool = True,
    ) -> None:
        self._boundaries = boundaries
        self._record_min_max = record_min_max

    def _create_aggregation(
        self,
        instrument: Instrument,
        attributes: Attributes,
        start_time_unix_nano: int,
    ) -> _Aggregation:
        return _ExplicitBucketHistogramAggregation(
            attributes,
            start_time_unix_nano,
            self._boundaries,
            self._record_min_max,
        )


class SumAggregation(Aggregation):
    """This aggregation informs the SDK to collect:

    - The arithmetic sum of Measurement values.
    """

    def _create_aggregation(
        self,
        instrument: Instrument,
        attributes: Attributes,
        start_time_unix_nano: int,
    ) -> _Aggregation:
        temporality = AggregationTemporality.UNSPECIFIED
        if isinstance(instrument, Synchronous):
            temporality = AggregationTemporality.DELTA
        elif isinstance(instrument, Asynchronous):
            temporality = AggregationTemporality.CUMULATIVE

        return _SumAggregation(
            attributes,
            isinstance(instrument, (Counter, ObservableCounter)),
            temporality,
            start_time_unix_nano,
        )


class LastValueAggregation(Aggregation):
    """
    This aggregation informs the SDK to collect:

    - The last Measurement.
    - The timestamp of the last Measurement.
    """

    def _create_aggregation(
        self,
        instrument: Instrument,
        attributes: Attributes,
        start_time_unix_nano: int,
    ) -> _Aggregation:
        return _LastValueAggregation(attributes)


class DropAggregation(Aggregation):
    """Using this aggregation will make all measurements be ignored."""

    def _create_aggregation(
        self,
        instrument: Instrument,
        attributes: Attributes,
        start_time_unix_nano: int,
    ) -> _Aggregation:
        return _DropAggregation(attributes)

Youez - 2016 - github.com/yon3zu
LinuXploit