����JFIFXX�����    $.' ",#(7),01444'9=82<.342  2!!22222222222222222222222222222222222222222222222222����"��4�� ���,�PG"Z_�4�˷����kjز�Z�,F+��_z�,�© �����zh6�٨�ic�fu���#ډb���_�N�?��wQ���5-�~�I���8����TK<5o�Iv-�����k�_U_�����~b�M��d����Ӝ�U�Hh��?]��E�w��Q���k�{��_}qFW7HTՑ��Y��F�?_�'ϔ��_�Ջt��=||I ��6�έ"�����D���/[�k�9���Y�8ds|\���Ҿp6�Ҵ���]��.����6�z<�v��@]�i%��$j��~�g��J>��no����pM[me�i$[����s�o�ᘨ�˸ nɜG-�ĨU�ycP�3.DB�li�;��hj���x7Z^�N�h������N3u{�:j�x�힞��#M&��jL P@_���� P��&��o8������9�����@Sz6�t7#O�ߋ �s}Yf�T���lmr����Z)'N��k�۞p����w\�Tȯ?�8`�O��i{wﭹW�[�r�� ��Q4F�׊���3m&L�=��h3����z~��#�\�l :�F,j@�� ʱ�wQT����8�"kJO���6�֚l����}���R�>ډK���]��y����&����p�}b��;N�1�m�r$�|��7�>e�@B�TM*-iH��g�D�)� E�m�|�ؘbҗ�a��Ҿ����t4���o���G��*oCN�rP���Q��@z,|?W[0�����:�n,jWiE��W��$~/�hp\��?��{(�0���+�Y8rΟ�+����>S-S����VN;�}�s?.����� w�9��˟<���Mq4�Wv'��{)0�1mB��V����W[�����8�/<� �%���wT^�5���b��)iM� pg�N�&ݝ��VO~�q���u���9� ����!��J27����$O-���! �:�%H��� ـ����y�ΠM=t{!S�� oK8������t<����è:a������[�����ա�H���~��w��Qz`�po�^ ����Q��n� �,uu�C�$ ^���,������8�#��:�6��e�|~���!�3�3.�\0��q��o�4`.|� ����y�Q�`~;�d�ׯ,��O�Zw�������`73�v�܋�<���Ȏ�� ـ4k��5�K�a�u�=9Yd��$>x�A�&�� j0� ���vF��� Y�|�y��� ~�6�@c��1vOp�Ig����4��l�OD���L����� R���c���j�_�uX6��3?nk��Wy�f;^*B� ��@�~a�`��Eu������+���6�L��.ü>��}y���}_�O�6�͐�:�YrG�X��kG�����l^w���~㒶sy��Iu�!� W ��X��N�7BV��O��!X�2����wvG�R�f�T#�����t�/?���%8�^�W�aT��G�cL�M���I��(J����1~�8�?aT ���]����AS�E��(��*E}� 2��#I/�׍qz��^t�̔���b�Yz4x���t�){ OH��+(E��A&�N�������XT��o��"�XC��'���)}�J�z�p� ��~5�}�^����+�6����w��c��Q�|Lp�d�H��}�(�.|����k��c4^�"�����Z?ȕ ��a<�L�!039C� �Eu�C�F�Ew�ç ;�n?�*o���B�8�bʝ���'#Rqf���M}7����]����s2tcS{�\icTx;�\��7K���P���ʇ Z O-��~��c>"��?�������P��E��O�8��@�8��G��Q�g�a�Վ���󁶠�䧘��_%#r�>�1�z�a��eb��qcPѵ��n���#L��� =��׀t� L�7�`��V���A{�C:�g���e@�w1 Xp3�c3�ġ����p��M"'-�@n4���fG��B3�DJ�8[Jo�ߐ���gK)ƛ��$���� ���8�3�����+���� �����6�ʻ���� ���S�kI�*KZlT _`���?��K����QK�d����B`�s}�>���`��*�>��,*@J�d�oF*����弝��O}�k��s��]��y�ߘ��c1G�V���<=�7��7����6�q�PT��tXԀ�!9*4�4Tހ3XΛex�46���Y��D ����� �BdemDa����\�_l,��G�/���֌7���Y�](�xTt^%�GE�����4�}bT���ڹ�����;Y)���B�Q��u��>J/J �⮶.�XԄ��j�ݳ�+E��d ��r�5�_D�1 ��o�� �B�x�΢�#���<��W�����8���R6�@g�M�.��� dr�D��>(otU��@x=��~v���2� ӣ�d�oBd��3�eO�6�㣷�����ݜ6��6Y��Qz`��S��{���\P�~z m5{J/L��1������<�e�ͅPu�b�]�ϔ���'������f�b� Zpw��c`"��i���BD@:)ִ�:�]��hv�E�w���T�l��P���"Ju�}��وV J��G6��. J/�Qgl߭�e�����@�z�Zev2u�)]կ�����7x���s�M�-<ɯ�c��r�v�����@��$�ޮ}lk���a���'����>x��O\�ZFu>�����ck#��&:��`�$�ai�>2Δ����l���oF[h��lE�ܺ�Πk:)���`�� $[6�����9�����kOw�\|���8}������ބ:��񶐕��I�A1/�=�2[�,�!��.}gN#�u����b��� ~��݊��}34q����d�E��Lc��$��"�[q�U�硬g^��%B �z���r�pJ�ru%v\h1Y�ne`ǥ:g���pQM~�^�Xi� ��`S�:V29.�P���V�?B�k�� AEvw%�_�9C�Q����wKekPؠ�\�;Io d�{ ߞo�c1eP����\� `����E=���@K<�Y���eڼ�J���w����{av�F�'�M�@/J��+9p���|]�����Iw &`��8���&M�hg��[�{��Xj��%��Ӓ�$��(����ʹN���<>�I���RY���K2�NPlL�ɀ)��&e����B+ь����( � �JTx���_?EZ� }@ 6�U���뙢ط�z��dWI�n` D����噥�[��uV��"�G&Ú����2g�}&m��?ċ�"����Om#��������� ��{�ON��"S�X��Ne��ysQ���@Fn��Vg���dX�~nj�]J�<�K]:��FW��b�������62�=��5f����JKw��bf�X�55��~J �%^����:�-�QIE��P��v�nZum� z � ~ə ���� ���ة����;�f��\v���g�8�1��f24;�V���ǔ�)����9���1\��c��v�/'Ƞ�w�������$�4�R-��t���� e�6�/�ġ �̕Ecy�J���u�B���<�W�ַ~�w[B1L۲�-JS΂�{���΃������A��20�c#��@ 0!1@AP"#2Q`$3V�%45a6�FRUq��� ����^7ׅ,$n�������+��F�`��2X'��0vM��p�L=������5��8������u�p~���.�`r�����\���O��,ư�0oS ��_�M�����l���4�kv\JSd���x���SW�<��Ae�IX����������$I���w�:S���y���›R��9�Q[���,�5�;�@]�%���u�@ *ro�lbI �� ��+���%m:�͇ZV�����u�̉����θau<�fc�.����{�4Ա� �Q����*�Sm��8\ujqs]{kN���)qO�y�_*dJ�b�7���yQqI&9�ԌK!�M}�R�;������S�T���1���i[U�ɵz�]��U)V�S6���3$K{�ߊ<�(� E]Զ[ǼENg�����'�\?#)Dkf��J���o��v���'�%ƞ�&K�u�!��b�35LX�Ϸ��63$K�a�;�9>,R��W��3�3� d�JeTYE.Mϧ��-�o�j3+y��y^�c�������VO�9NV\nd�1 ��!͕_)a�v;����թ�M�lWR1��)El��P;��yوÏ�u 3�k�5Pr6<�⒲l�!˞*��u־�n�!�l:����UNW ��%��Chx8vL'��X�@��*��)���̮��ˍ��� ���D-M�+J�U�kvK����+�x8��cY������?�Ԡ��~3mo��|�u@[XeY�C�\Kp�x8�oC�C�&����N�~3-H���� ��MX�s�u<`���~"WL��$8ξ��3���a�)|:@�m�\���^�`�@ҷ)�5p+��6���p�%i)P M���ngc�����#0Aruz���RL+xSS?���ʮ}()#�t��mˇ!��0}}y����<�e� �-ή�Ԩ��X������ MF���ԙ~l L.3���}�V뽺�v�����멬��Nl�)�2����^�Iq��a��M��qG��T�����c3#������3U�Ǎ���}��לS�|qa��ڃ�+���-��2�f����/��bz��ڐ�� �ݼ[2�ç����k�X�2�* �Z�d���J�G����M*9W���s{��w���T��x��y,�in�O�v��]���n����P�$�JB@=4�OTI�n��e�22a\����q�d���%�$��(���:���: /*�K[PR�fr\nڙdN���F�n�$�4�[�� U�zƶ����� �mʋ���,�ao�u 3�z� �x��Kn����\[��VFmbE;�_U��&V�Gg�]L�۪&#n%�$ɯ�dG���D�TI=�%+AB�Ru#��b4�1�»x�cs�YzڙJG��f��Il��d�eF'T� iA��T���uC�$����Y��H?����[!G`}���ͪ� �纤Hv\������j�Ex�K���!���OiƸ�Yj�+u-<���'q����uN�*�r\��+�]���<�wOZ.fp�ێ��,-*)V?j-kÊ#�`�r��dV����(�ݽBk�����G�ƛk�QmUڗe��Z���f}|����8�8��a���i��3'J�����~G_�^���d�8w������ R�`(�~�.��u���l�s+g�bv���W���lGc}��u���afE~1�Ue������Z�0�8�=e�� f@/�jqEKQQ�J��oN��J���W5~M>$6�Lt�;$ʳ{���^��6�{����v6���ķܰg�V�cnn �~z�x�«�,2�u�?cE+Ș�H؎�%�Za�)���X>uW�Tz�Nyo����s���FQƤ��$��*�&�LLXL)�1�" L��eO��ɟ�9=���:t��Z���c��Ž���Y?�ӭV�wv�~,Y��r�ۗ�|�y��GaF�����C�����.�+� ���v1���fήJ�����]�S��T��B��n5sW}y�$��~z�'�c ��8 ��� ,! �p��VN�S��N�N�q��y8z˱�A��4��*��'������2n<�s���^ǧ˭P�Jޮɏ�U�G�L�J�*#��<�V��t7�8����TĜ>��i}K%,���)[��z�21z ?�N�i�n1?T�I�R#��m-�����������������1����lA�`��fT5+��ܐ�c�q՝��ʐ��,���3�f2U�եmab��#ŠdQ�y>\��)�SLY����w#��.���ʑ�f��� ,"+�w�~�N�'�c�O�3F�������N<���)j��&��,-� �љ���֊�_�zS���TǦ����w�>��?�������n��U仆�V���e�����0���$�C�d���rP �m�׈e�Xm�Vu� �L��.�bֹ��� �[Դaզ���*��\y�8�Է:�Ez\�0�Kq�C b��̘��cө���Q��=0Y��s�N��S.���3.���O�o:���#���v7�[#߫ ��5�܎�L���Er4���9n��COWlG�^��0k�%<���ZB���aB_���������'=��{i�v�l�$�uC���mƎҝ{�c㱼�y]���W�i ��ߧc��m�H� m�"�"�����;Y�ߝ�Z�Ǔ�����:S#��|}�y�,/k�Ld� TA�(�AI$+I3��;Y*���Z��}|��ӧO��d�v��..#:n��f>�>���ȶI�TX��� 8��y����"d�R�|�)0���=���n4��6ⲑ�+��r<�O�܂~zh�z����7ܓ�HH�Ga롏���nCo�>������a ���~]���R���̲c?�6(�q�;5%� |�uj�~z8R=X��I�V=�|{v�Gj\gc��q����z�؋%M�ߍ����1y��#��@f^���^�>N�����#x#۹��6�Y~�?�dfPO��{��P�4��V��u1E1J �*|���%���JN��`eWu�zk M6���q t[�� ��g�G���v��WIG��u_ft����5�j�"�Y�:T��ɐ���*�;� e5���4����q$C��2d�}���� _S�L#m�Yp��O�.�C�;��c����Hi#֩%+) �Ӎ��ƲV���SYź��g |���tj��3�8���r|���V��1#;.SQ�A[���S������#���`n�+���$��$I �P\[�@�s��(�ED�z���P��])8�G#��0B��[ى��X�II�q<��9�~[Z멜�Z�⊔IWU&A>�P~�#��dp<�?����7���c��'~���5 ��+$���lx@�M�dm��n<=e�dyX��?{�|Aef ,|n3�<~z�ƃ�uۧ�����P��Y,�ӥQ�*g�#먙R�\���;T��i,��[9Qi歉����c>]9�� ��"�c��P�� �Md?٥��If�ت�u��k��/����F��9�c*9��Ǎ:�ØF���z�n*�@|I�ށ9����N3{'��[�'ͬ�Ҳ4��#}��!�V� Fu��,�,mTIk���v C�7v���B�6k�T9��1�*l� '~��ƞF��lU��'�M ����][ΩũJ_�{�i�I�n��$���L�� j��O�dx�����kza۪��#�E��Cl����x˘�o�����V���ɞ�ljr��)�/,�߬h�L��#��^��L�ф�,íMƁe�̩�NB�L�����iL����q�}��(��q��6IçJ$�W�E$��:������=#����(�K�B����zђ <��K(�N�۫K�w��^O{!����)�H���>x�������lx�?>Պ�+�>�W���,Ly!_�D���Ō�l���Q�!�[ �S����J��1��Ɛ�Y}��b,+�Lo�x�ɓ)����=�y�oh�@�꥟/��I��ѭ=��P�y9��� �ۍYӘ�e+�p�Jnϱ?V\SO%�(�t� ���=?MR�[Ș�����d�/ ��n�l��B�7j� ��!�;ӥ�/�[-���A�>�dN�sLj ��,ɪv��=1c�.SQ�O3�U���ƀ�ܽ�E����������̻��9G�ϷD�7(�}��Ävӌ\�y�_0[w ���<΍>����a_��[0+�L��F.�޺��f�>oN�T����q;���y\��bՃ��y�jH�<|q-eɏ�_?_9+P���Hp$�����[ux�K w�Mw��N�ی'$Y2�=��q���KB��P��~������Yul:�[<����F1�2�O���5=d����]Y�sw:���Ϯ���E��j,_Q��X��z`H1,#II ��d�wr��P˂@�ZJV����y$�\y�{}��^~���[:N����ߌ�U�������O��d�����ؾe��${p>G��3c���Ė�lʌ�� ת��[��`ϱ�-W����dg�I��ig2��� ��}s ��ؤ(%#sS@���~���3�X�nRG�~\jc3�v��ӍL��M[JB�T��s3}��j�Nʖ��W����;7��ç?=X�F=-�=����q�ߚ���#���='�c��7���ڑW�I(O+=:uxq�������������e2�zi+�kuG�R��������0�&e�n���iT^J����~\jy���p'dtG��s����O��3����9* �b#Ɋ�� p������[Bws�T�>d4�ۧs���nv�n���U���_�~,�v����ƜJ1��s�� �QIz��)�(lv8M���U=�;����56��G���s#�K���MP�=��LvyGd��}�VwWBF�'�à �?MH�U�g2�� ����!�p�7Q��j��ڴ����=��j�u��� Jn�A s���uM������e��Ɔ�Ҕ�!)'��8Ϣ�ٔ��ޝ(��Vp���צ֖d=�IC�J�Ǡ{q������kԭ�߸���i��@K����u�|�p=..�*+����x�����z[Aqġ#s2a�Ɗ���RR�)*HRsi�~�a &f��M��P����-K�L@��Z��Xy�'x�{}��Zm+���:�)�) IJ�-i�u���� ���ܒH��'�L(7�y�GӜq���� j��� 6ߌg1�g�o���,kر���tY�?W,���p���e���f�OQS��!K�۟cҒA�|ս�j�>��=⬒��˧L[�� �߿2JaB~R��u�:��Q�] �0H~���]�7��Ƽ�I���(}��cq '�ήET���q�?f�ab���ӥvr� �)o��-Q��_'����ᴎo��K������;��V���o��%���~OK ����*��b�f:���-ťIR��`B�5!RB@���ï�� �u �̯e\�_U�_������� g�ES��3�������QT��a����x����U<~�c?�*�#]�MW,[8O�a�x��]�1bC|踤�P��lw5V%�)�{t�<��d��5���0i�XSU��m:��Z�┵�i�"��1�^B�-��P�hJ��&)O��*�D��c�W��vM��)����}���P��ܗ-q����\mmζZ-l@�}��a��E�6��F�@��&Sg@���ݚ�M����� ȹ 4����#p�\H����dYDo�H���"��\��..R�B�H�z_�/5˘����6��KhJR��P�mƶi�m���3�,#c�co��q�a)*Pt����R�m�k�7x�D�E�\Y�閣_X�<���~�)���c[[�BP����6�Yq���S��0����%_����;��Àv�~�| VS؇ ��'O0��F0��\���U�-�d@�����7�SJ*z��3n��y��P����O���������m�~�P�3|Y��ʉr#�C�<�G~�.,! ���bqx���h~0=��!ǫ�jy����l�O,�[B��~��|9��ٱ����Xly�#�i�B��g%�S��������tˋ���e���ې��\[d�t)��.+u�|1 ������#�~Oj����hS�%��i.�~X���I�H�m��0n���c�1uE�q��cF�RF�o���7� �O�ꮧ� ���ۛ{��ʛi5�rw?׌#Qn�TW��~?y$��m\�\o����%W� ?=>S�N@�� �Ʈ���R����N�)�r"C�:��:����� �����#��qb��Y�. �6[��2K����2u�Ǧ�HYR��Q�MV��� �G�$��Q+.>�����nNH��q�^��� ����q��mM��V��D�+�-�#*�U�̒ ���p욳��u:�������IB���m���PV@O���r[b= �� ��1U�E��_Nm�yKbN�O���U�}�the�`�|6֮P>�\2�P�V���I�D�i�P�O;�9�r�mAHG�W�S]��J*�_�G��+kP�2����Ka�Z���H�'K�x�W�MZ%�O�YD�Rc+o��?�q��Ghm��d�S�oh�\�D�|:W������UA�Qc yT�q������~^�H��/��#p�CZ���T�I�1�ӏT����4��"�ČZ�����}��`w�#�*,ʹ�� ��0�i��課�Om�*�da��^gJ݅{���l�e9uF#T�ֲ��̲�ٞC"�q���ߍ ոޑ�o#�XZTp����@ o�8��(jd��xw�]�,f���`~�|,s��^����f�1���t��|��m�򸄭/ctr��5s��7�9Q�4�H1꠲BB@l9@���C�����+�wp�xu�£Yc�9��?`@#�o�mH�s2��)�=��2�.�l����jg�9$�Y�S�%*L������R�Y������7Z���,*=�䷘$�������arm�o�ϰ���UW.|�r�uf����IGw�t����Zwo��~5 ��YյhO+=8fF�)�W�7�L9lM�̘·Y���֘YLf�큹�pRF���99.A �"wz��=E\Z���'a� 2��Ǚ�#;�'}�G���*��l��^"q��+2FQ� hj��kŦ��${���ޮ-�T�٭cf�|�3#~�RJ����t��$b�(R��(����r���dx� >U b�&9,>���%E\� Ά�e�$��'�q't��*�א���ެ�b��-|d���SB�O�O��$�R+�H�)�܎�K��1m`;�J�2�Y~9��O�g8=vqD`K[�F)k�[���1m޼c��n���]s�k�z$@��)!I �x՝"v��9=�ZA=`Ɠi �:�E��)`7��vI��}d�YI�_ �o�:ob���o ���3Q��&D&�2=�� �Ά��;>�h����y.*ⅥS������Ӭ�+q&����j|UƧ����}���J0��WW< ۋS�)jQR�j���Ư��rN)�Gű�4Ѷ(�S)Ǣ�8��i��W52���No˓� ۍ%�5brOn�L�;�n��\G����=�^U�dI���8$�&���h��'���+�(������cȁ߫k�l��S^���cƗjԌE�ꭔ��gF���Ȓ��@���}O���*;e�v�WV���YJ\�]X'5��ղ�k�F��b 6R�o՜m��i N�i����>J����?��lPm�U��}>_Z&�KK��q�r��I�D�Չ~�q�3fL�:S�e>���E���-G���{L�6p�e,8��������QI��h��a�Xa��U�A'���ʂ���s�+טIjP�-��y�8ۈZ?J$��W�P� ��R�s�]��|�l(�ԓ��sƊi��o(��S0��Y� 8�T97.�����WiL��c�~�dxc�E|�2!�X�K�Ƙਫ਼�$((�6�~|d9u+�qd�^3�89��Y�6L�.I�����?���iI�q���9�)O/뚅����O���X��X�V��ZF[�یgQ�L��K1���RҖr@v�#��X�l��F���Нy�S�8�7�kF!A��sM���^rkp�jP�DyS$N���q��nxҍ!U�f�!eh�i�2�m���`�Y�I�9r�6� �TF���C}/�y�^���Η���5d�'��9A-��J��>{�_l+�`��A���[�'��յ�ϛ#w:݅�%��X�}�&�PSt�Q�"�-��\縵�/����$Ɨh�Xb�*�y��BS����;W�ջ_mc�����vt?2}1�;qS�d�d~u:2k5�2�R�~�z+|HE!)�Ǟl��7`��0�<�,�2*���Hl-��x�^����'_TV�gZA�'j� ^�2Ϊ��N7t�����?w�� �x1��f��Iz�C-Ȗ��K�^q�;���-W�DvT�7��8�Z�������� hK�(P:��Q- �8�n�Z���܃e貾�<�1�YT<�,�����"�6{/ �?�͟��|1�:�#g��W�>$����d��J��d�B��=��jf[��%rE^��il:��B���x���Sּ�1հ��,�=��*�7 fcG��#q� �eh?��2�7�����,�!7x��6�n�LC�4x��},Geǝ�tC.��vS �F�43��zz\��;QYC,6����~;RYS/6���|2���5���v��T��i����������mlv��������&� �nRh^ejR�LG�f���? �ۉҬܦƩ��|��Ȱ����>3����!v��i�ʯ�>�v��オ�X3e���_1z�Kȗ\<������!�8���V��]��?b�k41�Re��T�q��mz��TiOʦ�Z��Xq���L������q"+���2ۨ��8}�&N7XU7Ap�d�X��~�׿��&4e�o�F��� �H����O���č�c�� 懴�6���͉��+)��v;j��ݷ�� �UV�� i��� j���Y9GdÒJ1��詞�����V?h��l����l�cGs�ځ�������y�Ac�����\V3�? �� ܙg�>qH�S,�E�W�[�㺨�uch�⍸�O�}���a��>�q�6�n6����N6�q������N ! 1AQaq�0@����"2BRb�#Pr���3C`��Scst���$4D���%Td�� ?���N����a��3��m���C���w��������xA�m�q�m���m������$����4n淿t'��C"w��zU=D�\R+w�p+Y�T�&�պ@��ƃ��3ޯ?�Aﶂ��aŘ���@-�����Q�=���9D��ռ�ѻ@��M�V��P��܅�G5�f�Y<�u=,EC)�<�Fy'�"�&�չ�X~f��l�KԆV��?�� �W�N����=(� �;���{�r����ٌ�Y���h{�١������jW����P���Tc�����X�K�r��}���w�R��%��?���E��m�� �Y�q|����\lEE4���r���}�lsI�Y������f�$�=�d�yO����p�����yBj8jU�o�/�S��?�U��*������ˍ�0������u�q�m [�?f����a�� )Q�>����6#������� ?����0UQ����,IX���(6ڵ[�DI�MNލ�c&���υ�j\��X�R|,4��� j������T�hA�e��^���d���b<����n�� �즇�=!���3�^�`j�h�ȓr��jẕ�c�,ٞX����-����a�ﶔ���#�$��]w�O��Ӫ�1y%��L�Y<�wg#�ǝ�̗`�x�xa�t�w��»1���o7o5��>�m뭛C���Uƃߜ}�C���y1Xνm�F8�jI���]����H���ۺиE@I�i;r�8ӭ����V�F�Շ| ��&?�3|x�B�MuS�Ge�=Ӕ�#BE5G�����Y!z��_e��q�р/W>|-�Ci߇�t�1ޯќd�R3�u��g�=0 5��[?�#͏��q�cf���H��{ ?u�=?�?ǯ���}Z��z���hmΔ�BFTW�����<�q�(v� ��!��z���iW]*�J�V�z��gX֧A�q�&��/w���u�gYӘa���; �i=����g:��?2�dž6�ى�k�4�>�Pxs����}������G�9��3 ���)gG�R<>r h�$��'nc�h�P��Bj��J�ҧH� -��N1���N��?��~��}-q!=��_2hc�M��l�vY%UE�@|�v����M2�.Y[|y�"Eï��K�ZF,�ɯ?,q�?v�M 80jx�"�;�9vk�����+ ֧�� �ȺU��?�%�vcV��mA�6��Qg^M����A}�3�nl� QRN�l8�kkn�'�����(��M�7m9و�q���%ޟ���*h$Zk"��$�9��: �?U8�Sl��,,|ɒ��xH(ѷ����Gn�/Q�4�P��G�%��Ա8�N��!� �&�7�;���eKM7�4��9R/%����l�c>�x;������>��C�:�����t��h?aKX�bhe�ᜋ^�$�Iհ �hr7%F$�E��Fd���t��5���+�(M6�t����Ü�UU|zW�=a�Ts�Tg������dqP�Q����b'�m���1{|Y����X�N��b �P~��F^F:����k6�"�j!�� �I�r�`��1&�-$�Bevk:y���#yw��I0��x��=D�4��tU���P�ZH��ڠ底taP��6����b>�xa����Q�#� WeF��ŮNj�p�J* mQ�N����*I�-*�ȩ�F�g�3 �5��V�ʊ�ɮ�a��5F���O@{���NX��?����H�]3��1�Ri_u��������ѕ�� ����0��� F��~��:60�p�͈�S��qX#a�5>���`�o&+�<2�D����: �������ڝ�$�nP���*)�N�|y�Ej�F�5ټ�e���ihy�Z �>���k�bH�a�v��h�-#���!�Po=@k̆IEN��@��}Ll?j�O������߭�ʞ���Q|A07x���wt!xf���I2?Z��<ץ�T���cU�j��]��陎Ltl �}5�ϓ��$�,��O�mˊ�;�@O��jE��j(�ا,��LX���LO���Ц�90�O �.����a��nA���7������j4 ��W��_ٓ���zW�jcB������y՗+EM�)d���N�g6�y1_x��p�$Lv:��9�"z��p���ʙ$��^��JԼ*�ϭ����o���=x�Lj�6�J��u82�A�H�3$�ٕ@�=Vv�]�'�qEz�;I˼��)��=��ɯ���x �/�W(V���p�����$ �m�������u�����񶤑Oqˎ�T����r��㠚x�sr�GC��byp�G��1ߠ�w e�8�$⿄����/�M{*}��W�]˷.�CK\�ުx���/$�WPw���r� |i���&�}�{�X� �>��$-��l���?-z���g����lΆ���(F���h�vS*���b���߲ڡn,|)mrH[���a�3�ר�[1��3o_�U�3�TC�$��(�=�)0�kgP���� ��u�^=��4 �WYCҸ:��vQ�ר�X�à��tk�m,�t*��^�,�}D*� �"(�I��9R����>`�`��[~Q]�#af��i6l��8���6�:,s�s�N6�j"�A4���IuQ��6E,�GnH��zS�HO�uk�5$�I�4��ؤ�Q9�@��C����wp�BGv[]�u�Ov���0I4���\��y�����Q�Ѹ��~>Z��8�T��a��q�ޣ;z��a���/��S��I:�ܫ_�|������>=Z����8:�S��U�I�J��"IY���8%b8���H��:�QO�6�;7�I�S��J��ҌAά3��>c���E+&jf$eC+�z�;��V����� �r���ʺ������my�e���aQ�f&��6�ND��.:��NT�vm�<- u���ǝ\MvZY�N�NT��-A�>jr!S��n�O 1�3�Ns�%�3D@���`������ܟ 1�^c<���� �a�ɽ�̲�Xë#�w�|y�cW�=�9I*H8�p�^(4���՗�k��arOcW�tO�\�ƍR��8����'�K���I�Q�����?5�>[�}��yU�ײ -h��=��% q�ThG�2�)���"ו3]�!kB��*p�FDl�A���,�eEi�H�f�Ps�����5�H:�Փ~�H�0Dت�D�I����h�F3�������c��2���E��9�H��5�zԑ�ʚ�i�X�=:m�xg�hd(�v����׊�9iS��O��d@0ڽ���:�p�5�h-��t�&���X�q�ӕ,��ie�|���7A�2���O%P��E��htj��Y1��w�Ѓ!����  ���� ࢽ��My�7�\�a�@�ţ�J �4�Ȼ�F�@o�̒?4�wx��)��]�P��~�����u�����5�����7X ��9��^ܩ�U;Iꭆ 5 �������eK2�7(�{|��Y׎ �V��\"���Z�1� Z�����}��(�Ǝ"�1S���_�vE30>���p;� ΝD��%x�W�?W?v����o�^V�i�d��r[��/&>�~`�9Wh��y�;���R��� ;;ɮT��?����r$�g1�K����A��C��c��K��l:�'��3 c�ﳯ*"t8�~l��)���m��+U,z��`(�>yJ�?����h>��]��v��ЍG*�{`��;y]��I�T� ;c��NU�fo¾h���/$���|NS���1�S�"�H��V���T���4��uhǜ�]�v;���5�͠x��'C\�SBpl���h}�N����� A�Bx���%��ޭ�l��/����T��w�ʽ]D�=����K���ž�r㻠l4�S�O?=�k �M:� ��c�C�a�#ha���)�ѐxc�s���gP�iG��{+���x���Q���I= �� z��ԫ+ �8"�k�ñ�j=|����c ��y��CF��/��*9ж�h{ �?4�o� ��k�m�Q�N�x��;�Y��4膚�a�w?�6�>e]�����Q�r�:����g�,i"�����ԩA�*M�<�G��b�if��l^M��5� �Ҩ�{����6J��ZJ�����P�*�����Y���ݛu�_4�9�I8�7���������,^ToR���m4�H��?�N�S�ѕw��/S��甍�@�9H�S�T��t�ƻ���ʒU��*{Xs�@����f�����֒Li�K{H�w^���������Ϥm�tq���s� ���ք��f:��o~s��g�r��ט� �S�ѱC�e]�x���a��) ���(b-$(�j>�7q�B?ӕ�F��hV25r[7 Y� }L�R��}����*sg+��x�r�2�U=�*'WS��ZDW]�WǞ�<��叓���{�$�9Ou4��y�90-�1�'*D`�c�^o?(�9��u���ݐ��'PI&� f�Jݮ�������:wS����jfP1F:X �H�9dԯ���˝[�_54 �}*;@�ܨ�� ð�yn�T���?�ןd�#���4rG�ͨ��H�1�|-#���Mr�S3��G�3�����)�.᧏3v�z֑��r����$G"�`j �1t��x0<Ɔ�Wh6�y�6��,œ�Ga��gA����y��b��)��h�D��ß�_�m��ü �gG;��e�v��ݝ�nQ� ��C����-�*��o���y�a��M��I�>�<���]obD��"�:���G�A��-\%LT�8���c�)��+y76���o�Q�#*{�(F�⽕�y����=���rW�\p���۩�c���A���^e6��K������ʐ�cVf5$�'->���ՉN"���F�"�UQ@�f��Gb~��#�&�M=��8�ט�JNu9��D��[̤�s�o�~������ G��9T�tW^g5y$b��Y'��س�Ǵ�=��U-2 #�MC�t(�i� �lj�@Q 5�̣i�*�O����s�x�K�f��}\��M{E�V�{�υ��Ƈ�����);�H����I��fe�Lȣr�2��>��W�I�Ȃ6������i��k�� �5�YOxȺ����>��Y�f5'��|��H+��98pj�n�.O�y�������jY��~��i�w'������l�;�s�2��Y��:'lg�ꥴ)o#'Sa�a�K��Z� �m��}�`169�n���"���x��I ��*+� }F<��cГ���F�P�������ֹ*�PqX�x۩��,� ��N�� �4<-����%����:��7����W���u�`����� $�?�I��&����o��o��`v�>��P��"��l���4��5'�Z�gE���8���?��[�X�7(��.Q�-��*���ތL@̲����v��.5���[��=�t\+�CNܛ��,g�SQnH����}*F�G16���&:�t��4ُ"A��̣��$�b �|����#rs��a�����T�� ]�<�j��BS�('$�ɻ� �wP;�/�n��?�ݜ��x�F��yUn�~mL*-�������Xf�wd^�a�}��f�,=t�׵i�.2/wpN�Ep8�OР���•��R�FJ� 55TZ��T �ɭ�<��]��/�0�r�@�f��V��V����Nz�G��^���7hZi����k��3�,kN�e|�vg�1{9]_i��X5y7� 8e]�U����'�-2,���e"����]ot�I��Y_��n�(JҼ��1�O ]bXc���Nu�No��pS���Q_���_�?i�~�x h5d'�(qw52] ��'ޤ�q��o1�R!���`ywy�A4u���h<קy���\[~�4�\ X�Wt/� 6�����n�F�a8��f���z �3$�t(���q��q�x��^�XWeN'p<-v�!�{�(>ӽDP7��ո0�y)�e$ٕv�Ih'Q�EA�m*�H��RI��=:��� ���4牢) �%_iN�ݧ�l]� �Nt���G��H�L��� ɱ�g<���1V�,�J~�ٹ�"K��Q�� 9�HS�9�?@��k����r�;we݁�]I�!{ �@�G�[�"��`���J:�n]�{�cA�E����V��ʆ���#��U9�6����j�#Y�m\��q�e4h�B�7��C�������d<�?J����1g:ٳ���=Y���D�p�ц� ׈ǔ��1�]26؜oS�'��9�V�FVu�P�h�9�xc�oq�X��p�o�5��Ա5$�9W�V(�[Ak�aY錎qf;�'�[�|���b�6�Ck��)��#a#a˙��8���=äh�4��2��C��4tm^ �n'c���]GQ$[Wҿ��i���vN�{Fu ��1�gx��1┷���N�m��{j-,��x�� Ūm�ЧS�[�s���Gna���䑴�� x�p 8<������97�Q���ϴ�v�aϚG��Rt�Һ׈�f^\r��WH�JU�7Z���y)�vg=����n��4�_)y��D'y�6�]�c�5̪�\� �PF�k����&�c;��cq�$~T�7j ���nç]�<�g ":�to�t}�159�<�/�8������m�b�K#g'I'.W�����6��I/��>v��\�MN��g���m�A�yQL�4u�Lj�j9��#44�t��l^�}L����n��R��!��t��±]��r��h6ٍ>�yҏ�N��fU�� ���� Fm@�8}�/u��jb9������he:A�y�ծw��GpΧh�5����l}�3p468��)U��d��c����;Us/�֔�YX�1�O2��uq�s��`hwg�r~�{ R��mhN��؎*q 42�*th��>�#���E����#��Hv�O����q�}�����6�e��\�,Wk�#���X��b>��p}�դ��3���T5��†��6��[��@�P�y*n��|'f�֧>�lư΂�̺����SU�'*�q�p�_S�����M�� '��c�6�����m�� ySʨ;M��r���Ƌ�m�Kxo,���Gm�P��A�G�:��i��w�9�}M(�^�V��$ǒ�ѽ�9���|���� �a����J�SQ�a���r�B;����}���ٻ֢�2�%U���c�#�g���N�a�ݕ�'�v�[�OY'��3L�3�;,p�]@�S��{ls��X�'���c�jw�k'a�.��}�}&�� �dP�*�bK=ɍ!����;3n�gΊU�ߴmt�'*{,=SzfD� A��ko~�G�aoq�_mi}#�m�������P�Xhύ����mxǍ�΂���巿zf��Q���c���|kc�����?���W��Y�$���_Lv����l߶��c���`?����l�j�ݲˏ!V��6����U�Ђ(A���4y)H���p�Z_�x��>���e��R��$�/�`^'3qˏ�-&Q�=?��CFVR �D�fV�9��{�8g�������n�h�(P"��6�[�D���< E�����~0<@�`�G�6����Hг�cc�� �c�K.5��D��d�B���`?�XQ��2��ٿyqo&+�1^� DW�0�ꊩ���G�#��Q�nL3��c���������/��x ��1�1[y�x�პCW��C�c�UĨ80�m�e�4.{�m��u���I=��f�����0QRls9���f���������9���~f�����Ǩ��a�"@�8���ȁ�Q����#c�ic������G��$���G���r/$W�(��W���V�"��m�7�[m�A�m����bo��D� j����۳� l���^�k�h׽����� ��#� iXn�v��eT�k�a�^Y�4�BN��ĕ��0 !01@Q"2AaPq3BR������?���@4�Q�����T3,���㺠�W�[=JK�Ϟ���2�r^7��vc�:�9 �E�ߴ�w�S#d���Ix��u��:��Hp��9E!�� V 2;73|F��9Y���*ʬ�F��D����u&���y؟��^EA��A��(ɩ���^��GV:ݜDy�`��Jr29ܾ�㝉��[���E;Fzx��YG��U�e�Y�C���� ����v-tx����I�sם�Ę�q��Eb�+P\ :>�i�C'�;�����k|z�رn�y]�#ǿb��Q��������w�����(�r|ӹs��[�D��2v-%��@;�8<a���[\o[ϧw��I!��*0�krs)�[�J9^��ʜ��p1)� "��/_>��o��<1����A�E�y^�C��`�x1'ܣn�p��s`l���fQ��):�l����b>�Me�jH^?�kl3(�z:���1ŠK&?Q�~�{�ٺ�h�y���/�[��V�|6��}�KbX����mn[-��7�5q�94�������dm���c^���h� X��5��<�eޘ>G���-�}�دB�ޟ� ��|�rt�M��V+�]�c?�-#ڛ��^ǂ}���Lkr���O��u�>�-D�ry� D?:ޞ�U��ǜ�7�V��?瓮�"�#���r��չģVR;�n���/_� ؉v�ݶe5d�b9��/O��009�G���5n�W����JpA�*�r9�>�1��.[t���s�F���nQ� V 77R�]�ɫ8����_0<՜�IF�u(v��4��F�k�3��E)��N:��yڮe��P�`�1}�$WS��J�SQ�N�j�ٺ��޵�#l���ј(�5=��5�lǏmoW�v-�1����v,W�mn��߀$x�<����v�j(����c]��@#��1������Ǔ���o'��u+����;G�#�޸��v-lη��/(`i⣍Pm^���ԯ̾9Z��F��������n��1��� ��]�[��)�'������:�֪�W��FC����� �B9،!?���]��V��A�Վ�M��b�w��G F>_DȬ0¤�#�QR�[V��kz���m�w�"��9ZG�7'[��=�Q����j8R?�zf�\a�=��O�U����*oB�A�|G���2�54 �p��.w7� �� ��&������ξxGHp� B%��$g�����t�Џ򤵍z���HN�u�Я�-�'4��0��;_��3 !01"@AQa2Pq#3BR������?��ʩca��en��^��8���<�u#��m*08r��y�N"�<�Ѳ0��@\�p��� �����Kv�D��J8�Fҽ� �f�Y��-m�ybX�NP����}�!*8t(�OqѢ��Q�wW�K��ZD��Δ^e��!� ��B�K��p~�����e*l}z#9ң�k���q#�Ft�o��S�R����-�w�!�S���Ӥß|M�l޶V��!eˈ�8Y���c�ЮM2��tk���� ������J�fS����Ö*i/2�����n]�k�\���|4yX�8��U�P.���Ы[���l��@"�t�<������5�lF���vU�����W��W��;�b�cД^6[#7@vU�xgZv��F�6��Q,K�v��� �+Ъ��n��Ǣ��Ft���8��0��c�@�!�Zq s�v�t�;#](B��-�nῃ~���3g������5�J�%���O������n�kB�ĺ�.r��+���#�N$?�q�/�s�6��p��a����a��J/��M�8��6�ܰ"�*������ɗud"\w���aT(����[��F��U՛����RT�b���n�*��6���O��SJ�.�ij<�v�MT��R\c��5l�sZB>F��<7�;EA��{��E���Ö��1U/�#��d1�a�n.1ě����0�ʾR�h��|�R��Ao�3�m3 ��%�� ���28Q� ��y��φ���H�To�7�lW>����#i`�q���c����a��� �m,B�-j����݋�'mR1Ήt�>��V��p���s�0IbI�C.���1R�ea�����]H�6����������4B>��o��](��$B���m�����a�!=��?�B� K�Ǿ+�Ծ"�n���K��*��+��[T#�{E�J�S����Q�����s�5�:�U�\wĐ�f�3����܆&�)����I���Ԇw��E T�lrTf6Q|R�h:��[K�� �z��c֧�G�C��%\��_�a�84��HcO�bi��ؖV��7H �)*ģK~Xhչ0��4?�0��� �E<���}3���#���u�?�� ��|g�S�6ꊤ�|�I#Hڛ� �ա��w�X��9��7���Ŀ%�SL��y6č��|�F�a 8���b��$�sק�h���b9RAu7�˨p�Č�_\*w��묦��F ����4D~�f����|(�"m���NK��i�S�>�$d7SlA��/�²����SL��|6N�}���S�˯���g��]6��; �#�.��<���q'Q�1|KQ$�����񛩶"�$r�b:���N8�w@��8$�� �AjfG|~�9F ���Y��ʺ��Bwؒ������M:I岎�G��`s�YV5����6��A �b:�W���G�q%l�����F��H���7�������Fsv7��k�� 403WebShell
403Webshell
Server IP : 97.74.90.209  /  Your IP : 216.73.216.74
Web Server : Apache
System : Linux live.indianstaffingfederation.org 4.18.0-553.54.1.el8_10.x86_64 #1 SMP Tue May 27 22:49:52 EDT 2025 x86_64
User : indianstaffing ( 1003)
PHP Version : 8.3.22
Disable Function : exec,passthru,shell_exec,system
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : ON  |  Pkexec : ON
Directory :  /usr/share/perl5/vendor_perl/Math/BigInt/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /usr/share/perl5/vendor_perl/Math/BigInt/Calc.pm
package Math::BigInt::Calc;

use 5.006001;
use strict;
use warnings;

use Carp;
use Math::BigInt::Lib;

our $VERSION = '1.999811';

our @ISA = ('Math::BigInt::Lib');

# Package to store unsigned big integers in decimal and do math with them

# Internally the numbers are stored in an array with at least 1 element, no
# leading zero parts (except the first) and in base 1eX where X is determined
# automatically at loading time to be the maximum possible value

# todo:
# - fully remove funky $# stuff in div() (maybe - that code scares me...)

# USE_MUL: due to problems on certain os (os390, posix-bc) "* 1e-5" is used
# instead of "/ 1e5" at some places, (marked with USE_MUL). Other platforms
# BS2000, some Crays need USE_DIV instead.
# The BEGIN block is used to determine which of the two variants gives the
# correct result.

# Beware of things like:
# $i = $i * $y + $car; $car = int($i / $BASE); $i = $i % $BASE;
# This works on x86, but fails on ARM (SA1100, iPAQ) due to who knows what
# reasons. So, use this instead (slower, but correct):
# $i = $i * $y + $car; $car = int($i / $BASE); $i -= $BASE * $car;

##############################################################################
# global constants, flags and accessory

# announce that we are compatible with MBI v1.83 and up
sub api_version () { 2; }

# constants for easier life
my ($BASE, $BASE_LEN, $RBASE, $MAX_VAL);
my ($AND_BITS, $XOR_BITS, $OR_BITS);
my ($AND_MASK, $XOR_MASK, $OR_MASK);

sub _base_len {
    # Set/get the BASE_LEN and assorted other, related values.
    # Used only by the testsuite, the set variant is used only by the BEGIN
    # block below:

    my ($class, $b, $int) = @_;
    if (defined $b) {
        # avoid redefinitions
        undef &_mul;
        undef &_div;

        if ($] >= 5.008 && $int && $b > 7) {
            $BASE_LEN = $b;
            *_mul = \&_mul_use_div_64;
            *_div = \&_div_use_div_64;
            $BASE = int("1e" . $BASE_LEN);
            $MAX_VAL = $BASE-1;
            return $BASE_LEN unless wantarray;
            return ($BASE_LEN, $BASE, $AND_BITS, $XOR_BITS, $OR_BITS, $BASE_LEN, $MAX_VAL);
        }

        # find whether we can use mul or div in mul()/div()
        $BASE_LEN = $b + 1;
        my $caught = 0;
        while (--$BASE_LEN > 5) {
            $BASE = int("1e" . $BASE_LEN);
            $RBASE = abs('1e-' . $BASE_LEN); # see USE_MUL
            $caught = 0;
            $caught += 1 if (int($BASE * $RBASE) != 1); # should be 1
            $caught += 2 if (int($BASE / $BASE) != 1);  # should be 1
            last if $caught != 3;
        }
        $BASE = int("1e" . $BASE_LEN);
        $RBASE = abs('1e-' . $BASE_LEN); # see USE_MUL
        $MAX_VAL = $BASE-1;

        # ($caught & 1) != 0 => cannot use MUL
        # ($caught & 2) != 0 => cannot use DIV
        if ($caught == 2)       # 2
        {
            # must USE_MUL since we cannot use DIV
            *_mul = \&_mul_use_mul;
            *_div = \&_div_use_mul;
        } else                  # 0 or 1
        {
            # can USE_DIV instead
            *_mul = \&_mul_use_div;
            *_div = \&_div_use_div;
        }
    }
    return $BASE_LEN unless wantarray;
    return ($BASE_LEN, $BASE, $AND_BITS, $XOR_BITS, $OR_BITS, $BASE_LEN, $MAX_VAL);
}

sub _new {
    # Given a string representing an integer, returns a reference to an array
    # of integers, where each integer represents a chunk of the original input
    # integer.

    my ($class, $str) = @_;
    #unless ($str =~ /^([1-9]\d*|0)\z/) {
    #    require Carp;
    #    Carp::croak("Invalid input string '$str'");
    #}

    my $input_len = length($str) - 1;

    # Shortcut for small numbers.
    return bless [ $str ], $class if $input_len < $BASE_LEN;

    my $format = "a" . (($input_len % $BASE_LEN) + 1);
    $format .= $] < 5.008 ? "a$BASE_LEN" x int($input_len / $BASE_LEN)
                          : "(a$BASE_LEN)*";

    my $self = [ reverse(map { 0 + $_ } unpack($format, $str)) ];
    return bless $self, $class;
}

BEGIN {
    # from Daniel Pfeiffer: determine largest group of digits that is precisely
    # multipliable with itself plus carry
    # Test now changed to expect the proper pattern, not a result off by 1 or 2
    my ($e, $num) = 3;          # lowest value we will use is 3+1-1 = 3
    do {
        $num = '9' x ++$e;
        $num *= $num + 1;
    } while $num =~ /9{$e}0{$e}/; # must be a certain pattern
    $e--;                         # last test failed, so retract one step
    # the limits below brush the problems with the test above under the rug:
    # the test should be able to find the proper $e automatically
    $e = 5 if $^O =~ /^uts/;    # UTS get's some special treatment
    $e = 5 if $^O =~ /^unicos/; # unicos is also problematic (6 seems to work
                                # there, but we play safe)

    my $int = 0;
    if ($e > 7) {
        use integer;
        my $e1 = 7;
        $num = 7;
        do {
            $num = ('9' x ++$e1) + 0;
            $num *= $num + 1;
        } while ("$num" =~ /9{$e1}0{$e1}/); # must be a certain pattern
        $e1--;                  # last test failed, so retract one step
        if ($e1 > 7) {
            $int = 1;
            $e = $e1;
        }
    }

    __PACKAGE__ -> _base_len($e, $int);        # set and store

    use integer;
    # find out how many bits _and, _or and _xor can take (old default = 16)
    # I don't think anybody has yet 128 bit scalars, so let's play safe.
    local $^W = 0;              # don't warn about 'nonportable number'
    $AND_BITS = 15;
    $XOR_BITS = 15;
    $OR_BITS  = 15;

    # find max bits, we will not go higher than numberofbits that fit into $BASE
    # to make _and etc simpler (and faster for smaller, slower for large numbers)
    my $max = 16;
    while (2 ** $max < $BASE) {
        $max++;
    }
    {
        no integer;
        $max = 16 if $] < 5.006; # older Perls might not take >16 too well
    }
    my ($x, $y, $z);

    do {
        $AND_BITS++;
        $x = CORE::oct('0b' . '1' x $AND_BITS);
        $y = $x & $x;
        $z = (2 ** $AND_BITS) - 1;
    } while ($AND_BITS < $max && $x == $z && $y == $x);
    $AND_BITS --;               # retreat one step

    do {
        $XOR_BITS++;
        $x = CORE::oct('0b' . '1' x $XOR_BITS);
        $y = $x ^ 0;
        $z = (2 ** $XOR_BITS) - 1;
    } while ($XOR_BITS < $max && $x == $z && $y == $x);
    $XOR_BITS --;               # retreat one step

    do {
        $OR_BITS++;
        $x = CORE::oct('0b' . '1' x $OR_BITS);
        $y = $x | $x;
        $z = (2 ** $OR_BITS) -  1;
    } while ($OR_BITS < $max && $x == $z && $y == $x);
    $OR_BITS--;                # retreat one step

    $AND_MASK = __PACKAGE__->_new(( 2 ** $AND_BITS ));
    $XOR_MASK = __PACKAGE__->_new(( 2 ** $XOR_BITS ));
    $OR_MASK  = __PACKAGE__->_new(( 2 ** $OR_BITS  ));

    # We can compute the approximate length no faster than the real length:
    *_alen = \&_len;
}

###############################################################################

sub _zero {
    # create a zero
    my $class = shift;
    return bless [ 0 ], $class;
}

sub _one {
    # create a one
    my $class = shift;
    return bless [ 1 ], $class;
}

sub _two {
    # create a two
    my $class = shift;
    return bless [ 2 ], $class;
}

sub _ten {
    # create a 10
    my $class = shift;
    bless [ 10 ], $class;
}

sub _1ex {
    # create a 1Ex
    my $class = shift;

    my $rem   = $_[0] % $BASE_LEN;      # remainder
    my $parts = $_[0] / $BASE_LEN;      # parts

    # 000000, 000000, 100
    bless [ (0) x $parts, '1' . ('0' x $rem) ], $class;
}

sub _copy {
    # make a true copy
    my $class = shift;
    return bless [ @{ $_[0] } ], $class;
}

# catch and throw away
sub import { }

##############################################################################
# convert back to string and number

sub _str {
    # Convert number from internal base 1eN format to string format. Internal
    # format is always normalized, i.e., no leading zeros.

    my $ary = $_[1];
    my $idx = $#$ary;           # index of last element

    if ($idx < 0) {             # should not happen
        require Carp;
        Carp::croak("$_[1] has no elements");
    }

    # Handle first one differently, since it should not have any leading zeros.
    my $ret = int($ary->[$idx]);
    if ($idx > 0) {
        # Interestingly, the pre-padd method uses more time.
        # The old grep variant takes longer (14 vs. 10 sec).
        my $z = '0' x ($BASE_LEN - 1);
        while (--$idx >= 0) {
            $ret .= substr($z . $ary->[$idx], -$BASE_LEN);
        }
    }
    $ret;
}

sub _num {
    # Make a Perl scalar number (int/float) from a BigInt object.
    my $x = $_[1];

    return $x->[0] if @$x == 1;         # below $BASE

    # Start with the most significant element and work towards the least
    # significant element. Avoid multiplying "inf" (which happens if the number
    # overflows) with "0" (if there are zero elements in $x) since this gives
    # "nan" which propagates to the output.

    my $num = 0;
    for (my $i = $#$x ; $i >= 0 ; --$i) {
        $num *= $BASE;
        $num += $x -> [$i];
    }
    return $num;
}

##############################################################################
# actual math code

sub _add {
    # (ref to int_num_array, ref to int_num_array)
    #
    # Routine to add two base 1eX numbers stolen from Knuth Vol 2 Algorithm A
    # pg 231. There are separate routines to add and sub as per Knuth pg 233.
    # This routine modifies array x, but not y.

    my ($c, $x, $y) = @_;

    # $x + 0 => $x

    return $x if @$y == 1 && $y->[0] == 0;

    # 0 + $y => $y->copy

    if (@$x == 1 && $x->[0] == 0) {
        @$x = @$y;
        return $x;
    }

    # For each in Y, add Y to X and carry. If after that, something is left in
    # X, foreach in X add carry to X and then return X, carry. Trades one
    # "$j++" for having to shift arrays.
    my $i;
    my $car = 0;
    my $j = 0;
    for $i (@$y) {
        $x->[$j] -= $BASE if $car = (($x->[$j] += $i + $car) >= $BASE) ? 1 : 0;
        $j++;
    }
    while ($car != 0) {
        $x->[$j] -= $BASE if $car = (($x->[$j] += $car) >= $BASE) ? 1 : 0;
        $j++;
    }
    $x;
}

sub _inc {
    # (ref to int_num_array, ref to int_num_array)
    # Add 1 to $x, modify $x in place
    my ($c, $x) = @_;

    for my $i (@$x) {
        return $x if ($i += 1) < $BASE; # early out
        $i = 0;                         # overflow, next
    }
    push @$x, 1 if $x->[-1] == 0;       # last overflowed, so extend
    $x;
}

sub _dec {
    # (ref to int_num_array, ref to int_num_array)
    # Sub 1 from $x, modify $x in place
    my ($c, $x) = @_;

    my $MAX = $BASE - 1;                # since MAX_VAL based on BASE
    for my $i (@$x) {
        last if ($i -= 1) >= 0;         # early out
        $i = $MAX;                      # underflow, next
    }
    pop @$x if $x->[-1] == 0 && @$x > 1; # last underflowed (but leave 0)
    $x;
}

sub _sub {
    # (ref to int_num_array, ref to int_num_array, swap)
    #
    # Subtract base 1eX numbers -- stolen from Knuth Vol 2 pg 232, $x > $y
    # subtract Y from X by modifying x in place
    my ($c, $sx, $sy, $s) = @_;

    my $car = 0;
    my $i;
    my $j = 0;
    if (!$s) {
        for $i (@$sx) {
            last unless defined $sy->[$j] || $car;
            $i += $BASE if $car = (($i -= ($sy->[$j] || 0) + $car) < 0);
            $j++;
        }
        # might leave leading zeros, so fix that
        return __strip_zeros($sx);
    }
    for $i (@$sx) {
        # We can't do an early out if $x < $y, since we need to copy the high
        # chunks from $y. Found by Bob Mathews.
        #last unless defined $sy->[$j] || $car;
        $sy->[$j] += $BASE
          if $car = ($sy->[$j] = $i - ($sy->[$j] || 0) - $car) < 0;
        $j++;
    }
    # might leave leading zeros, so fix that
    __strip_zeros($sy);
}

sub _mul_use_mul {
    # (ref to int_num_array, ref to int_num_array)
    # multiply two numbers in internal representation
    # modifies first arg, second need not be different from first
    my ($c, $xv, $yv) = @_;

    if (@$yv == 1) {
        # shortcut for two very short numbers (improved by Nathan Zook)
        # works also if xv and yv are the same reference, and handles also $x == 0
        if (@$xv == 1) {
            if (($xv->[0] *= $yv->[0]) >= $BASE) {
                $xv->[0] = $xv->[0] - ($xv->[1] = int($xv->[0] * $RBASE)) * $BASE;
            }
            ;
            return $xv;
        }
        # $x * 0 => 0
        if ($yv->[0] == 0) {
            @$xv = (0);
            return $xv;
        }
        # multiply a large number a by a single element one, so speed up
        my $y = $yv->[0];
        my $car = 0;
        foreach my $i (@$xv) {
            $i = $i * $y + $car;
            $car = int($i * $RBASE);
            $i -= $car * $BASE;
        }
        push @$xv, $car if $car != 0;
        return $xv;
    }
    # shortcut for result $x == 0 => result = 0
    return $xv if @$xv == 1 && $xv->[0] == 0;

    # since multiplying $x with $x fails, make copy in this case
    $yv = [ @$xv ] if $xv == $yv; # same references?

    my @prod = ();
    my ($prod, $car, $cty, $xi, $yi);

    for $xi (@$xv) {
        $car = 0;
        $cty = 0;

        # slow variant
        #    for $yi (@$yv)
        #      {
        #      $prod = $xi * $yi + ($prod[$cty] || 0) + $car;
        #      $prod[$cty++] =
        #       $prod - ($car = int($prod * RBASE)) * $BASE;  # see USE_MUL
        #      }
        #    $prod[$cty] += $car if $car; # need really to check for 0?
        #    $xi = shift @prod;

        # faster variant
        # looping through this if $xi == 0 is silly - so optimize it away!
        $xi = (shift @prod || 0), next if $xi == 0;
        for $yi (@$yv) {
            $prod = $xi * $yi + ($prod[$cty] || 0) + $car;
            ##     this is actually a tad slower
            ##        $prod = $prod[$cty]; $prod += ($car + $xi * $yi);     # no ||0 here
            $prod[$cty++] =
              $prod - ($car = int($prod * $RBASE)) * $BASE; # see USE_MUL
        }
        $prod[$cty] += $car if $car; # need really to check for 0?
        $xi = shift @prod || 0;      # || 0 makes v5.005_3 happy
    }
    push @$xv, @prod;
    # can't have leading zeros
    #  __strip_zeros($xv);
    $xv;
}

sub _mul_use_div_64 {
    # (ref to int_num_array, ref to int_num_array)
    # multiply two numbers in internal representation
    # modifies first arg, second need not be different from first
    # works for 64 bit integer with "use integer"
    my ($c, $xv, $yv) = @_;

    use integer;
    if (@$yv == 1) {
        # shortcut for two small numbers, also handles $x == 0
        if (@$xv == 1) {
            # shortcut for two very short numbers (improved by Nathan Zook)
            # works also if xv and yv are the same reference, and handles also $x == 0
            if (($xv->[0] *= $yv->[0]) >= $BASE) {
                $xv->[0] =
                  $xv->[0] - ($xv->[1] = $xv->[0] / $BASE) * $BASE;
            }
            return $xv;
        }
        # $x * 0 => 0
        if ($yv->[0] == 0) {
            @$xv = (0);
            return $xv;
        }
        # multiply a large number a by a single element one, so speed up
        my $y = $yv->[0];
        my $car = 0;
        foreach my $i (@$xv) {
            #$i = $i * $y + $car; $car = $i / $BASE; $i -= $car * $BASE;
            $i = $i * $y + $car;
            $i -= ($car = $i / $BASE) * $BASE;
        }
        push @$xv, $car if $car != 0;
        return $xv;
    }
    # shortcut for result $x == 0 => result = 0
    return $xv if ( ((@$xv == 1) && ($xv->[0] == 0)) );

    # since multiplying $x with $x fails, make copy in this case
    $yv = $c->_copy($xv) if $xv == $yv; # same references?

    my @prod = ();
    my ($prod, $car, $cty, $xi, $yi);
    for $xi (@$xv) {
        $car = 0;
        $cty = 0;
        # looping through this if $xi == 0 is silly - so optimize it away!
        $xi = (shift @prod || 0), next if $xi == 0;
        for $yi (@$yv) {
            $prod = $xi * $yi + ($prod[$cty] || 0) + $car;
            $prod[$cty++] = $prod - ($car = $prod / $BASE) * $BASE;
        }
        $prod[$cty] += $car if $car; # need really to check for 0?
        $xi = shift @prod || 0;      # || 0 makes v5.005_3 happy
    }
    push @$xv, @prod;
    $xv;
}

sub _mul_use_div {
    # (ref to int_num_array, ref to int_num_array)
    # multiply two numbers in internal representation
    # modifies first arg, second need not be different from first
    my ($c, $xv, $yv) = @_;

    if (@$yv == 1) {
        # shortcut for two small numbers, also handles $x == 0
        if (@$xv == 1) {
            # shortcut for two very short numbers (improved by Nathan Zook)
            # works also if xv and yv are the same reference, and handles also $x == 0
            if (($xv->[0] *= $yv->[0]) >= $BASE) {
                $xv->[0] =
                  $xv->[0] - ($xv->[1] = int($xv->[0] / $BASE)) * $BASE;
            }
            ;
            return $xv;
        }
        # $x * 0 => 0
        if ($yv->[0] == 0) {
            @$xv = (0);
            return $xv;
        }
        # multiply a large number a by a single element one, so speed up
        my $y = $yv->[0];
        my $car = 0;
        foreach my $i (@$xv) {
            $i = $i * $y + $car;
            $car = int($i / $BASE);
            $i -= $car * $BASE;
            # This (together with use integer;) does not work on 32-bit Perls
            #$i = $i * $y + $car; $i -= ($car = $i / $BASE) * $BASE;
        }
        push @$xv, $car if $car != 0;
        return $xv;
    }
    # shortcut for result $x == 0 => result = 0
    return $xv if ( ((@$xv == 1) && ($xv->[0] == 0)) );

    # since multiplying $x with $x fails, make copy in this case
    $yv = $c->_copy($xv) if $xv == $yv; # same references?

    my @prod = ();
    my ($prod, $car, $cty, $xi, $yi);
    for $xi (@$xv) {
        $car = 0;
        $cty = 0;
        # looping through this if $xi == 0 is silly - so optimize it away!
        $xi = (shift @prod || 0), next if $xi == 0;
        for $yi (@$yv) {
            $prod = $xi * $yi + ($prod[$cty] || 0) + $car;
            $prod[$cty++] = $prod - ($car = int($prod / $BASE)) * $BASE;
        }
        $prod[$cty] += $car if $car; # need really to check for 0?
        $xi = shift @prod || 0;      # || 0 makes v5.005_3 happy
    }
    push @$xv, @prod;
    # can't have leading zeros
    #  __strip_zeros($xv);
    $xv;
}

sub _div_use_mul {
    # ref to array, ref to array, modify first array and return remainder if
    # in list context

    # see comments in _div_use_div() for more explanations

    my ($c, $x, $yorg) = @_;

    # the general div algorithm here is about O(N*N) and thus quite slow, so
    # we first check for some special cases and use shortcuts to handle them.

    # This works, because we store the numbers in a chunked format where each
    # element contains 5..7 digits (depending on system).

    # if both numbers have only one element:
    if (@$x == 1 && @$yorg == 1) {
        # shortcut, $yorg and $x are two small numbers
        if (wantarray) {
            my $rem = [ $x->[0] % $yorg->[0] ];
            bless $rem, $c;
            $x->[0] = int($x->[0] / $yorg->[0]);
            return ($x, $rem);
        } else {
            $x->[0] = int($x->[0] / $yorg->[0]);
            return $x;
        }
    }

    # if x has more than one, but y has only one element:
    if (@$yorg == 1) {
        my $rem;
        $rem = $c->_mod($c->_copy($x), $yorg) if wantarray;

        # shortcut, $y is < $BASE
        my $j = @$x;
        my $r = 0;
        my $y = $yorg->[0];
        my $b;
        while ($j-- > 0) {
            $b = $r * $BASE + $x->[$j];
            $x->[$j] = int($b/$y);
            $r = $b % $y;
        }
        pop @$x if @$x > 1 && $x->[-1] == 0; # splice up a leading zero
        return ($x, $rem) if wantarray;
        return $x;
    }

    # now x and y have more than one element

    # check whether y has more elements than x, if yet, the result will be 0
    if (@$yorg > @$x) {
        my $rem;
        $rem = $c->_copy($x) if wantarray;    # make copy
        @$x = 0;                        # set to 0
        return ($x, $rem) if wantarray; # including remainder?
        return $x;                      # only x, which is [0] now
    }
    # check whether the numbers have the same number of elements, in that case
    # the result will fit into one element and can be computed efficiently
    if (@$yorg == @$x) {

        # if $yorg has more digits than $x (it's leading element is longer than
        # the one from $x), the result will also be 0:
        if (length(int($yorg->[-1])) > length(int($x->[-1]))) {
            my $rem = $c->_copy($x) if wantarray;        # make copy
            @$x = 0;                            # set to 0
            return ($x, $rem) if wantarray;     # including remainder?
            return $x;
        }
        # now calculate $x / $yorg
        if (length(int($yorg->[-1])) == length(int($x->[-1]))) {
            # same length, so make full compare

            my $a = 0;
            my $j = @$x - 1;
            # manual way (abort if unequal, good for early ne)
            while ($j >= 0) {
                last if ($a = $x->[$j] - $yorg->[$j]);
                $j--;
            }
            # $a contains the result of the compare between X and Y
            # a < 0: x < y, a == 0: x == y, a > 0: x > y
            if ($a <= 0) {
                # a = 0 => x == y => rem 0
                # a < 0 => x < y => rem = x
                my $rem = $a == 0 ? $c->_zero() : $c->_copy($x);
                @$x = 0;             # if $a < 0
                $x->[0] = 1 if $a == 0;  # $x == $y
                return ($x, $rem) if wantarray;
                return $x;
            }
            # $x >= $y, so proceed normally
        }
    }

    # all other cases:

    my $y = $c->_copy($yorg);         # always make copy to preserve

    my ($car, $bar, $prd, $dd, $xi, $yi, @q, $v2, $v1, @d, $tmp, $q, $u2, $u1, $u0);

    $car = $bar = $prd = 0;
    if (($dd = int($BASE / ($y->[-1] + 1))) != 1) {
        for $xi (@$x) {
            $xi = $xi * $dd + $car;
            $xi -= ($car = int($xi * $RBASE)) * $BASE; # see USE_MUL
        }
        push(@$x, $car);
        $car = 0;
        for $yi (@$y) {
            $yi = $yi * $dd + $car;
            $yi -= ($car = int($yi * $RBASE)) * $BASE; # see USE_MUL
        }
    } else {
        push(@$x, 0);
    }
    @q = ();
    ($v2, $v1) = @$y[-2, -1];
    $v2 = 0 unless $v2;
    while ($#$x > $#$y) {
        ($u2, $u1, $u0) = @$x[-3 .. -1];
        $u2 = 0 unless $u2;
        #warn "oups v1 is 0, u0: $u0 $y->[-2] $y->[-1] l ",scalar @$y,"\n"
        # if $v1 == 0;
        $q = (($u0 == $v1) ? $MAX_VAL : int(($u0 * $BASE + $u1) / $v1));
        --$q while ($v2 * $q > ($u0 * $BASE + $u1 - $q * $v1) * $BASE + $u2);
        if ($q) {
            ($car, $bar) = (0, 0);
            for ($yi = 0, $xi = $#$x - $#$y-1; $yi <= $#$y; ++$yi, ++$xi) {
                $prd = $q * $y->[$yi] + $car;
                $prd -= ($car = int($prd * $RBASE)) * $BASE; # see USE_MUL
                $x->[$xi] += $BASE if ($bar = (($x->[$xi] -= $prd + $bar) < 0));
            }
            if ($x->[-1] < $car + $bar) {
                $car = 0;
                --$q;
                for ($yi = 0, $xi = $#$x - $#$y-1; $yi <= $#$y; ++$yi, ++$xi) {
                    $x->[$xi] -= $BASE
                      if ($car = (($x->[$xi] += $y->[$yi] + $car) >= $BASE));
                }
            }
        }
        pop(@$x);
        unshift(@q, $q);
    }
    if (wantarray) {
        my $d = bless [], $c;
        if ($dd != 1) {
            $car = 0;
            for $xi (reverse @$x) {
                $prd = $car * $BASE + $xi;
                $car = $prd - ($tmp = int($prd / $dd)) * $dd; # see USE_MUL
                unshift(@$d, $tmp);
            }
        } else {
            @$d = @$x;
        }
        @$x = @q;
        __strip_zeros($x);
        __strip_zeros($d);
        return ($x, $d);
    }
    @$x = @q;
    __strip_zeros($x);
    $x;
}

sub _div_use_div_64 {
    # ref to array, ref to array, modify first array and return remainder if
    # in list context
    # This version works on 64 bit integers
    my ($c, $x, $yorg) = @_;

    use integer;
    # the general div algorithm here is about O(N*N) and thus quite slow, so
    # we first check for some special cases and use shortcuts to handle them.

    # This works, because we store the numbers in a chunked format where each
    # element contains 5..7 digits (depending on system).

    # if both numbers have only one element:
    if (@$x == 1 && @$yorg == 1) {
        # shortcut, $yorg and $x are two small numbers
        if (wantarray) {
            my $rem = [ $x->[0] % $yorg->[0] ];
            bless $rem, $c;
            $x->[0] = int($x->[0] / $yorg->[0]);
            return ($x, $rem);
        } else {
            $x->[0] = int($x->[0] / $yorg->[0]);
            return $x;
        }
    }
    # if x has more than one, but y has only one element:
    if (@$yorg == 1) {
        my $rem;
        $rem = $c->_mod($c->_copy($x), $yorg) if wantarray;

        # shortcut, $y is < $BASE
        my $j = @$x;
        my $r = 0;
        my $y = $yorg->[0];
        my $b;
        while ($j-- > 0) {
            $b = $r * $BASE + $x->[$j];
            $x->[$j] = int($b/$y);
            $r = $b % $y;
        }
        pop @$x if @$x > 1 && $x->[-1] == 0; # splice up a leading zero
        return ($x, $rem) if wantarray;
        return $x;
    }
    # now x and y have more than one element

    # check whether y has more elements than x, if yet, the result will be 0
    if (@$yorg > @$x) {
        my $rem;
        $rem = $c->_copy($x) if wantarray;    # make copy
        @$x = 0;                        # set to 0
        return ($x, $rem) if wantarray; # including remainder?
        return $x;                      # only x, which is [0] now
    }
    # check whether the numbers have the same number of elements, in that case
    # the result will fit into one element and can be computed efficiently
    if (@$yorg == @$x) {
        my $rem;
        # if $yorg has more digits than $x (it's leading element is longer than
        # the one from $x), the result will also be 0:
        if (length(int($yorg->[-1])) > length(int($x->[-1]))) {
            $rem = $c->_copy($x) if wantarray;     # make copy
            @$x = 0;                          # set to 0
            return ($x, $rem) if wantarray; # including remainder?
            return $x;
        }
        # now calculate $x / $yorg

        if (length(int($yorg->[-1])) == length(int($x->[-1]))) {
            # same length, so make full compare

            my $a = 0;
            my $j = @$x - 1;
            # manual way (abort if unequal, good for early ne)
            while ($j >= 0) {
                last if ($a = $x->[$j] - $yorg->[$j]);
                $j--;
            }
            # $a contains the result of the compare between X and Y
            # a < 0: x < y, a == 0: x == y, a > 0: x > y
            if ($a <= 0) {
                $rem = $c->_zero();                  # a = 0 => x == y => rem 0
                $rem = $c->_copy($x) if $a != 0;       # a < 0 => x < y => rem = x
                @$x = 0;                       # if $a < 0
                $x->[0] = 1 if $a == 0;        # $x == $y
                return ($x, $rem) if wantarray; # including remainder?
                return $x;
            }
            # $x >= $y, so proceed normally
        }
    }

    # all other cases:

    my $y = $c->_copy($yorg);         # always make copy to preserve

    my ($car, $bar, $prd, $dd, $xi, $yi, @q, $v2, $v1, @d, $tmp, $q, $u2, $u1, $u0);

    $car = $bar = $prd = 0;
    if (($dd = int($BASE / ($y->[-1] + 1))) != 1) {
        for $xi (@$x) {
            $xi = $xi * $dd + $car;
            $xi -= ($car = int($xi / $BASE)) * $BASE;
        }
        push(@$x, $car);
        $car = 0;
        for $yi (@$y) {
            $yi = $yi * $dd + $car;
            $yi -= ($car = int($yi / $BASE)) * $BASE;
        }
    } else {
        push(@$x, 0);
    }

    # @q will accumulate the final result, $q contains the current computed
    # part of the final result

    @q = ();
    ($v2, $v1) = @$y[-2, -1];
    $v2 = 0 unless $v2;
    while ($#$x > $#$y) {
        ($u2, $u1, $u0) = @$x[-3..-1];
        $u2 = 0 unless $u2;
        #warn "oups v1 is 0, u0: $u0 $y->[-2] $y->[-1] l ",scalar @$y,"\n"
        # if $v1 == 0;
        $q = (($u0 == $v1) ? $MAX_VAL : int(($u0 * $BASE + $u1) / $v1));
        --$q while ($v2 * $q > ($u0 * $BASE +$ u1- $q*$v1) * $BASE + $u2);
        if ($q) {
            ($car, $bar) = (0, 0);
            for ($yi = 0, $xi = $#$x - $#$y - 1; $yi <= $#$y; ++$yi, ++$xi) {
                $prd = $q * $y->[$yi] + $car;
                $prd -= ($car = int($prd / $BASE)) * $BASE;
                $x->[$xi] += $BASE if ($bar = (($x->[$xi] -= $prd + $bar) < 0));
            }
            if ($x->[-1] < $car + $bar) {
                $car = 0;
                --$q;
                for ($yi = 0, $xi = $#$x - $#$y - 1; $yi <= $#$y; ++$yi, ++$xi) {
                    $x->[$xi] -= $BASE
                      if ($car = (($x->[$xi] += $y->[$yi] + $car) >= $BASE));
                }
            }
        }
        pop(@$x);
        unshift(@q, $q);
    }
    if (wantarray) {
        my $d = bless [], $c;
        if ($dd != 1) {
            $car = 0;
            for $xi (reverse @$x) {
                $prd = $car * $BASE + $xi;
                $car = $prd - ($tmp = int($prd / $dd)) * $dd;
                unshift(@$d, $tmp);
            }
        } else {
            @$d = @$x;
        }
        @$x = @q;
        __strip_zeros($x);
        __strip_zeros($d);
        return ($x, $d);
    }
    @$x = @q;
    __strip_zeros($x);
    $x;
}

sub _div_use_div {
    # ref to array, ref to array, modify first array and return remainder if
    # in list context
    my ($c, $x, $yorg) = @_;

    # the general div algorithm here is about O(N*N) and thus quite slow, so
    # we first check for some special cases and use shortcuts to handle them.

    # This works, because we store the numbers in a chunked format where each
    # element contains 5..7 digits (depending on system).

    # if both numbers have only one element:
    if (@$x == 1 && @$yorg == 1) {
        # shortcut, $yorg and $x are two small numbers
        if (wantarray) {
            my $rem = [ $x->[0] % $yorg->[0] ];
            bless $rem, $c;
            $x->[0] = int($x->[0] / $yorg->[0]);
            return ($x, $rem);
        } else {
            $x->[0] = int($x->[0] / $yorg->[0]);
            return $x;
        }
    }
    # if x has more than one, but y has only one element:
    if (@$yorg == 1) {
        my $rem;
        $rem = $c->_mod($c->_copy($x), $yorg) if wantarray;

        # shortcut, $y is < $BASE
        my $j = @$x;
        my $r = 0;
        my $y = $yorg->[0];
        my $b;
        while ($j-- > 0) {
            $b = $r * $BASE + $x->[$j];
            $x->[$j] = int($b/$y);
            $r = $b % $y;
        }
        pop @$x if @$x > 1 && $x->[-1] == 0; # splice up a leading zero
        return ($x, $rem) if wantarray;
        return $x;
    }
    # now x and y have more than one element

    # check whether y has more elements than x, if yet, the result will be 0
    if (@$yorg > @$x) {
        my $rem;
        $rem = $c->_copy($x) if wantarray;    # make copy
        @$x = 0;                        # set to 0
        return ($x, $rem) if wantarray; # including remainder?
        return $x;                      # only x, which is [0] now
    }
    # check whether the numbers have the same number of elements, in that case
    # the result will fit into one element and can be computed efficiently
    if (@$yorg == @$x) {
        my $rem;
        # if $yorg has more digits than $x (it's leading element is longer than
        # the one from $x), the result will also be 0:
        if (length(int($yorg->[-1])) > length(int($x->[-1]))) {
            $rem = $c->_copy($x) if wantarray;        # make copy
            @$x = 0;                            # set to 0
            return ($x, $rem) if wantarray;     # including remainder?
            return $x;
        }
        # now calculate $x / $yorg

        if (length(int($yorg->[-1])) == length(int($x->[-1]))) {
            # same length, so make full compare

            my $a = 0;
            my $j = @$x - 1;
            # manual way (abort if unequal, good for early ne)
            while ($j >= 0) {
                last if ($a = $x->[$j] - $yorg->[$j]);
                $j--;
            }
            # $a contains the result of the compare between X and Y
            # a < 0: x < y, a == 0: x == y, a > 0: x > y
            if ($a <= 0) {
                $rem = $c->_zero();                   # a = 0 => x == y => rem 0
                $rem = $c->_copy($x) if $a != 0;      # a < 0 => x < y => rem = x
                @$x = 0;
                $x->[0] = 0;                    # if $a < 0
                $x->[0] = 1 if $a == 0;         # $x == $y
                return ($x, $rem) if wantarray; # including remainder?
                return $x;
            }
            # $x >= $y, so proceed normally

        }
    }

    # all other cases:

    my $y = $c->_copy($yorg);         # always make copy to preserve

    my ($car, $bar, $prd, $dd, $xi, $yi, @q, $v2, $v1, @d, $tmp, $q, $u2, $u1, $u0);

    $car = $bar = $prd = 0;
    if (($dd = int($BASE / ($y->[-1] + 1))) != 1) {
        for $xi (@$x) {
            $xi = $xi * $dd + $car;
            $xi -= ($car = int($xi / $BASE)) * $BASE;
        }
        push(@$x, $car);
        $car = 0;
        for $yi (@$y) {
            $yi = $yi * $dd + $car;
            $yi -= ($car = int($yi / $BASE)) * $BASE;
        }
    } else {
        push(@$x, 0);
    }

    # @q will accumulate the final result, $q contains the current computed
    # part of the final result

    @q = ();
    ($v2, $v1) = @$y[-2, -1];
    $v2 = 0 unless $v2;
    while ($#$x > $#$y) {
        ($u2, $u1, $u0) = @$x[-3..-1];
        $u2 = 0 unless $u2;
        #warn "oups v1 is 0, u0: $u0 $y->[-2] $y->[-1] l ",scalar @$y,"\n"
        # if $v1 == 0;
        $q = (($u0 == $v1) ? $MAX_VAL : int(($u0 * $BASE + $u1) / $v1));
        --$q while ($v2 * $q > ($u0 * $BASE + $u1 - $q * $v1) * $BASE + $u2);
        if ($q) {
            ($car, $bar) = (0, 0);
            for ($yi = 0, $xi = $#$x - $#$y - 1; $yi <= $#$y; ++$yi, ++$xi) {
                $prd = $q * $y->[$yi] + $car;
                $prd -= ($car = int($prd / $BASE)) * $BASE;
                $x->[$xi] += $BASE if ($bar = (($x->[$xi] -= $prd + $bar) < 0));
            }
            if ($x->[-1] < $car + $bar) {
                $car = 0;
                --$q;
                for ($yi = 0, $xi = $#$x - $#$y - 1; $yi <= $#$y; ++$yi, ++$xi) {
                    $x->[$xi] -= $BASE
                      if ($car = (($x->[$xi] += $y->[$yi] + $car) >= $BASE));
                }
            }
        }
        pop(@$x);
        unshift(@q, $q);
    }
    if (wantarray) {
        my $d = bless [], $c;
        if ($dd != 1) {
            $car = 0;
            for $xi (reverse @$x) {
                $prd = $car * $BASE + $xi;
                $car = $prd - ($tmp = int($prd / $dd)) * $dd;
                unshift(@$d, $tmp);
            }
        } else {
            @$d = @$x;
        }
        @$x = @q;
        __strip_zeros($x);
        __strip_zeros($d);
        return ($x, $d);
    }
    @$x = @q;
    __strip_zeros($x);
    $x;
}

##############################################################################
# testing

sub _acmp {
    # Internal absolute post-normalized compare (ignore signs)
    # ref to array, ref to array, return <0, 0, >0
    # Arrays must have at least one entry; this is not checked for.
    my ($c, $cx, $cy) = @_;

    # shortcut for short numbers
    return (($cx->[0] <=> $cy->[0]) <=> 0)
      if @$cx == 1 && @$cy == 1;

    # fast comp based on number of array elements (aka pseudo-length)
    my $lxy = (@$cx - @$cy)
      # or length of first element if same number of elements (aka difference 0)
      ||
        # need int() here because sometimes the last element is '00018' vs '18'
        (length(int($cx->[-1])) - length(int($cy->[-1])));

    return -1 if $lxy < 0;      # already differs, ret
    return  1 if $lxy > 0;      # ditto

    # manual way (abort if unequal, good for early ne)
    my $a;
    my $j = @$cx;
    while (--$j >= 0) {
        last if $a = $cx->[$j] - $cy->[$j];
    }
    $a <=> 0;
}

sub _len {
    # compute number of digits in base 10

    # int() because add/sub sometimes leaves strings (like '00005') instead of
    # '5' in this place, thus causing length() to report wrong length
    my $cx = $_[1];

    (@$cx - 1) * $BASE_LEN + length(int($cx->[-1]));
}

sub _digit {
    # Return the nth digit. Zero is rightmost, so _digit(123, 0) gives 3.
    # Negative values count from the left, so _digit(123, -1) gives 1.
    my ($c, $x, $n) = @_;

    my $len = _len('', $x);

    $n += $len if $n < 0;               # -1 last, -2 second-to-last

    # Math::BigInt::Calc returns 0 if N is out of range, but this is not done
    # by the other backend libraries.

    return "0" if $n < 0 || $n >= $len; # return 0 for digits out of range

    my $elem = int($n / $BASE_LEN);     # index of array element
    my $digit = $n % $BASE_LEN;         # index of digit within the element
    substr("0" x $BASE_LEN . "$x->[$elem]", -1 - $digit, 1);
}

sub _zeros {
    # Return number of trailing zeros in decimal.
    # Check each array element for having 0 at end as long as elem == 0
    # Upon finding a elem != 0, stop.

    my $x = $_[1];

    return 0 if @$x == 1 && $x->[0] == 0;

    my $zeros = 0;
    foreach my $elem (@$x) {
        if ($elem != 0) {
            $elem =~ /[^0](0*)\z/;
            $zeros += length($1);       # count trailing zeros
            last;                       # early out
        }
        $zeros += $BASE_LEN;
    }
    $zeros;
}

##############################################################################
# _is_* routines

sub _is_zero {
    # return true if arg is zero
    @{$_[1]} == 1 && $_[1]->[0] == 0 ? 1 : 0;
}

sub _is_even {
    # return true if arg is even
    $_[1]->[0] & 1 ? 0 : 1;
}

sub _is_odd {
    # return true if arg is odd
    $_[1]->[0] & 1 ? 1 : 0;
}

sub _is_one {
    # return true if arg is one
    @{$_[1]} == 1 && $_[1]->[0] == 1 ? 1 : 0;
}

sub _is_two {
    # return true if arg is two
    @{$_[1]} == 1 && $_[1]->[0] == 2 ? 1 : 0;
}

sub _is_ten {
    # return true if arg is ten
    @{$_[1]} == 1 && $_[1]->[0] == 10 ? 1 : 0;
}

sub __strip_zeros {
    # Internal normalization function that strips leading zeros from the array.
    # Args: ref to array
    my $x = shift;

    push @$x, 0 if @$x == 0;    # div might return empty results, so fix it
    return $x if @$x == 1;      # early out

    #print "strip: cnt $cnt i $i\n";
    # '0', '3', '4', '0', '0',
    #  0    1    2    3    4
    # cnt = 5, i = 4
    # i = 4
    # i = 3
    # => fcnt = cnt - i (5-2 => 3, cnt => 5-1 = 4, throw away from 4th pos)
    # >= 1: skip first part (this can be zero)

    my $i = $#$x;
    while ($i > 0) {
        last if $x->[$i] != 0;
        $i--;
    }
    $i++;
    splice(@$x, $i) if $i < @$x;
    $x;
}

###############################################################################
# check routine to test internal state for corruptions

sub _check {
    # used by the test suite
    my ($class, $x) = @_;

    my $msg = $class -> SUPER::_check($x);
    return $msg if $msg;

    my $n;
    eval { $n = @$x };
    return "Not an array reference" unless $@ eq '';

    return "Reference to an empty array" unless $n > 0;

    # The following fails with Math::BigInt::FastCalc because a
    # Math::BigInt::FastCalc "object" is an unblessed array ref.
    #
    #return 0 unless ref($x) eq $class;

    for (my $i = 0 ; $i <= $#$x ; ++ $i) {
        my $e = $x -> [$i];

        return "Element at index $i is undefined"
          unless defined $e;

        return "Element at index $i is a '" . ref($e) .
          "', which is not a scalar"
          unless ref($e) eq "";

        # It would be better to use the regex /^([1-9]\d*|0)\z/, but that fails
        # in Math::BigInt::FastCalc, because it sometimes creates array
        # elements like "000000".
        return "Element at index $i is '$e', which does not look like an" .
          " normal integer" unless $e =~ /^\d+\z/;

        return "Element at index $i is '$e', which is not smaller than" .
          " the base '$BASE'" if $e >= $BASE;

        return "Element at index $i (last element) is zero"
          if $#$x > 0 && $i == $#$x && $e == 0;
    }

    return 0;
}

###############################################################################

sub _mod {
    # if possible, use mod shortcut
    my ($c, $x, $yo) = @_;

    # slow way since $y too big
    if (@$yo > 1) {
        my ($xo, $rem) = $c->_div($x, $yo);
        @$x = @$rem;
        return $x;
    }

    my $y = $yo->[0];

    # if both are single element arrays
    if (@$x == 1) {
        $x->[0] %= $y;
        return $x;
    }

    # if @$x has more than one element, but @$y is a single element
    my $b = $BASE % $y;
    if ($b == 0) {
        # when BASE % Y == 0 then (B * BASE) % Y == 0
        # (B * BASE) % $y + A % Y => A % Y
        # so need to consider only last element: O(1)
        $x->[0] %= $y;
    } elsif ($b == 1) {
        # else need to go through all elements in @$x: O(N), but loop is a bit
        # simplified
        my $r = 0;
        foreach (@$x) {
            $r = ($r + $_) % $y; # not much faster, but heh...
            #$r += $_ % $y; $r %= $y;
        }
        $r = 0 if $r == $y;
        $x->[0] = $r;
    } else {
        # else need to go through all elements in @$x: O(N)
        my $r = 0;
        my $bm = 1;
        foreach (@$x) {
            $r = ($_ * $bm + $r) % $y;
            $bm = ($bm * $b) % $y;

            #$r += ($_ % $y) * $bm;
            #$bm *= $b;
            #$bm %= $y;
            #$r %= $y;
        }
        $r = 0 if $r == $y;
        $x->[0] = $r;
    }
    @$x = $x->[0];              # keep one element of @$x
    return $x;
}

##############################################################################
# shifts

sub _rsft {
    my ($c, $x, $y, $n) = @_;

    if ($n != 10) {
        $n = $c->_new($n);
        return scalar $c->_div($x, $c->_pow($n, $y));
    }

    # shortcut (faster) for shifting by 10)
    # multiples of $BASE_LEN
    my $dst = 0;                # destination
    my $src = $c->_num($y);     # as normal int
    my $xlen = (@$x - 1) * $BASE_LEN + length(int($x->[-1]));
    if ($src >= $xlen or ($src == $xlen and !defined $x->[1])) {
        # 12345 67890 shifted right by more than 10 digits => 0
        splice(@$x, 1);         # leave only one element
        $x->[0] = 0;            # set to zero
        return $x;
    }
    my $rem = $src % $BASE_LEN;   # remainder to shift
    $src = int($src / $BASE_LEN); # source
    if ($rem == 0) {
        splice(@$x, 0, $src);   # even faster, 38.4 => 39.3
    } else {
        my $len = @$x - $src;   # elems to go
        my $vd;
        my $z = '0' x $BASE_LEN;
        $x->[ @$x ] = 0;          # avoid || 0 test inside loop
        while ($dst < $len) {
            $vd = $z . $x->[$src];
            $vd = substr($vd, -$BASE_LEN, $BASE_LEN - $rem);
            $src++;
            $vd = substr($z . $x->[$src], -$rem, $rem) . $vd;
            $vd = substr($vd, -$BASE_LEN, $BASE_LEN) if length($vd) > $BASE_LEN;
            $x->[$dst] = int($vd);
            $dst++;
        }
        splice(@$x, $dst) if $dst > 0;       # kill left-over array elems
        pop @$x if $x->[-1] == 0 && @$x > 1; # kill last element if 0
    }                                        # else rem == 0
    $x;
}

sub _lsft {
    my ($c, $x, $n, $b) = @_;

    return $x if $c->_is_zero($x);

    # Handle the special case when the base is a power of 10. Don't check
    # whether log($b)/log(10) is an integer, because log(1000)/log(10) is not
    # exactly 3.

    my $log10 = sprintf "%.0f", log($b) / log(10);
    if ($b == 10 ** $log10) {
        $b = 10;
        $n = $c->_mul($n, $c->_new($log10));

        # shortcut (faster) for shifting by 10) since we are in base 10eX
        # multiples of $BASE_LEN:
        my $src = @$x;                      # source
        my $len = $c->_num($n);             # shift-len as normal int
        my $rem = $len % $BASE_LEN;         # remainder to shift
        my $dst = $src + int($len / $BASE_LEN); # destination
        my $vd;                                 # further speedup
        $x->[$src] = 0;                         # avoid first ||0 for speed
        my $z = '0' x $BASE_LEN;
        while ($src >= 0) {
            $vd = $x->[$src];
            $vd = $z . $vd;
            $vd = substr($vd, -$BASE_LEN + $rem, $BASE_LEN - $rem);
            $vd .= $src > 0 ? substr($z . $x->[$src - 1], -$BASE_LEN, $rem)
              : '0' x $rem;
            $vd = substr($vd, -$BASE_LEN, $BASE_LEN) if length($vd) > $BASE_LEN;
            $x->[$dst] = int($vd);
            $dst--;
            $src--;
        }
        # set lowest parts to 0
        while ($dst >= 0) {
            $x->[$dst--] = 0;
        }
        # fix spurious last zero element
        splice @$x, -1 if $x->[-1] == 0;
        return $x;
    } else {
        $b = $c->_new($b);
        #print $c->_str($b);
        return $c->_mul($x, $c->_pow($b, $n));
    }
}

sub _pow {
    # power of $x to $y
    # ref to array, ref to array, return ref to array
    my ($c, $cx, $cy) = @_;

    if (@$cy == 1 && $cy->[0] == 0) {
        splice(@$cx, 1);
        $cx->[0] = 1;           # y == 0 => x => 1
        return $cx;
    }

    if ((@$cx == 1 && $cx->[0] == 1) || #    x == 1
        (@$cy == 1 && $cy->[0] == 1))   # or y == 1
    {
        return $cx;
    }

    if (@$cx == 1 && $cx->[0] == 0) {
        splice (@$cx, 1);
        $cx->[0] = 0;           # 0 ** y => 0 (if not y <= 0)
        return $cx;
    }

    my $pow2 = $c->_one();

    my $y_bin = $c->_as_bin($cy);
    $y_bin =~ s/^0b//;
    my $len = length($y_bin);
    while (--$len > 0) {
        $c->_mul($pow2, $cx) if substr($y_bin, $len, 1) eq '1'; # is odd?
        $c->_mul($cx, $cx);
    }

    $c->_mul($cx, $pow2);
    $cx;
}

sub _nok {
    # Return binomial coefficient (n over k).
    # Given refs to arrays, return ref to array.
    # First input argument is modified.

    my ($c, $n, $k) = @_;

    # If k > n/2, or, equivalently, 2*k > n, compute nok(n, k) as
    # nok(n, n-k), to minimize the number if iterations in the loop.

    {
        my $twok = $c->_mul($c->_two(), $c->_copy($k)); # 2 * k
        if ($c->_acmp($twok, $n) > 0) {               # if 2*k > n
            $k = $c->_sub($c->_copy($n), $k);         # k = n - k
        }
    }

    # Example:
    #
    # / 7 \       7!       1*2*3*4 * 5*6*7   5 * 6 * 7       6   7
    # |   | = --------- =  --------------- = --------- = 5 * - * -
    # \ 3 /   (7-3)! 3!    1*2*3*4 * 1*2*3   1 * 2 * 3       2   3

    if ($c->_is_zero($k)) {
        @$n = 1;
    } else {

        # Make a copy of the original n, since we'll be modifying n in-place.

        my $n_orig = $c->_copy($n);

        # n = 5, f = 6, d = 2 (cf. example above)

        $c->_sub($n, $k);
        $c->_inc($n);

        my $f = $c->_copy($n);
        $c->_inc($f);

        my $d = $c->_two();

        # while f <= n (the original n, that is) ...

        while ($c->_acmp($f, $n_orig) <= 0) {

            # n = (n * f / d) == 5 * 6 / 2 (cf. example above)

            $c->_mul($n, $f);
            $c->_div($n, $d);

            # f = 7, d = 3 (cf. example above)

            $c->_inc($f);
            $c->_inc($d);
        }

    }

    return $n;
}

my @factorials = (
                  1,
                  1,
                  2,
                  2*3,
                  2*3*4,
                  2*3*4*5,
                  2*3*4*5*6,
                  2*3*4*5*6*7,
                 );

sub _fac {
    # factorial of $x
    # ref to array, return ref to array
    my ($c, $cx) = @_;

    if ((@$cx == 1) && ($cx->[0] <= 7)) {
        $cx->[0] = $factorials[$cx->[0]]; # 0 => 1, 1 => 1, 2 => 2 etc.
        return $cx;
    }

    if ((@$cx == 1) &&          # we do this only if $x >= 12 and $x <= 7000
        ($cx->[0] >= 12 && $cx->[0] < 7000)) {

        # Calculate (k-j) * (k-j+1) ... k .. (k+j-1) * (k + j)
        # See http://blogten.blogspot.com/2007/01/calculating-n.html
        # The above series can be expressed as factors:
        #   k * k - (j - i) * 2
        # We cache k*k, and calculate (j * j) as the sum of the first j odd integers

        # This will not work when N exceeds the storage of a Perl scalar, however,
        # in this case the algorithm would be way too slow to terminate, anyway.

        # As soon as the last element of $cx is 0, we split it up and remember
        # how many zeors we got so far. The reason is that n! will accumulate
        # zeros at the end rather fast.
        my $zero_elements = 0;

        # If n is even, set n = n -1
        my $k = $c->_num($cx);
        my $even = 1;
        if (($k & 1) == 0) {
            $even = $k;
            $k --;
        }
        # set k to the center point
        $k = ($k + 1) / 2;
        #  print "k $k even: $even\n";
        # now calculate k * k
        my $k2 = $k * $k;
        my $odd = 1;
        my $sum = 1;
        my $i = $k - 1;
        # keep reference to x
        my $new_x = $c->_new($k * $even);
        @$cx = @$new_x;
        if ($cx->[0] == 0) {
            $zero_elements ++;
            shift @$cx;
        }
        #  print STDERR "x = ", $c->_str($cx), "\n";
        my $BASE2 = int(sqrt($BASE))-1;
        my $j = 1;
        while ($j <= $i) {
            my $m = ($k2 - $sum);
            $odd += 2;
            $sum += $odd;
            $j++;
            while ($j <= $i && ($m < $BASE2) && (($k2 - $sum) < $BASE2)) {
                $m *= ($k2 - $sum);
                $odd += 2;
                $sum += $odd;
                $j++;
                #      print STDERR "\n k2 $k2 m $m sum $sum odd $odd\n"; sleep(1);
            }
            if ($m < $BASE) {
                $c->_mul($cx, [$m]);
            } else {
                $c->_mul($cx, $c->_new($m));
            }
            if ($cx->[0] == 0) {
                $zero_elements ++;
                shift @$cx;
            }
            #    print STDERR "Calculate $k2 - $sum = $m (x = ", $c->_str($cx), ")\n";
        }
        # multiply in the zeros again
        unshift @$cx, (0) x $zero_elements;
        return $cx;
    }

    # go forward until $base is exceeded limit is either $x steps (steps == 100
    # means a result always too high) or $base.
    my $steps = 100;
    $steps = $cx->[0] if @$cx == 1;
    my $r = 2;
    my $cf = 3;
    my $step = 2;
    my $last = $r;
    while ($r * $cf < $BASE && $step < $steps) {
        $last = $r;
        $r *= $cf++;
        $step++;
    }
    if ((@$cx == 1) && $step == $cx->[0]) {
        # completely done, so keep reference to $x and return
        $cx->[0] = $r;
        return $cx;
    }

    # now we must do the left over steps
    my $n;                      # steps still to do
    if (@$cx == 1) {
        $n = $cx->[0];
    } else {
        $n = $c->_copy($cx);
    }

    # Set $cx to the last result below $BASE (but keep ref to $x)
    $cx->[0] = $last;
    splice (@$cx, 1);
    # As soon as the last element of $cx is 0, we split it up and remember
    # how many zeors we got so far. The reason is that n! will accumulate
    # zeros at the end rather fast.
    my $zero_elements = 0;

    # do left-over steps fit into a scalar?
    if (ref $n eq 'ARRAY') {
        # No, so use slower inc() & cmp()
        # ($n is at least $BASE here)
        my $base_2 = int(sqrt($BASE)) - 1;
        #print STDERR "base_2: $base_2\n";
        while ($step < $base_2) {
            if ($cx->[0] == 0) {
                $zero_elements ++;
                shift @$cx;
            }
            my $b = $step * ($step + 1);
            $step += 2;
            $c->_mul($cx, [$b]);
        }
        $step = [$step];
        while ($c->_acmp($step, $n) <= 0) {
            if ($cx->[0] == 0) {
                $zero_elements ++;
                shift @$cx;
            }
            $c->_mul($cx, $step);
            $c->_inc($step);
        }
    } else {
        # Yes, so we can speed it up slightly

        #    print "# left over steps $n\n";

        my $base_4 = int(sqrt(sqrt($BASE))) - 2;
        #print STDERR "base_4: $base_4\n";
        my $n4 = $n - 4;
        while ($step < $n4 && $step < $base_4) {
            if ($cx->[0] == 0) {
                $zero_elements ++;
                shift @$cx;
            }
            my $b = $step * ($step + 1);
            $step += 2;
            $b *= $step * ($step + 1);
            $step += 2;
            $c->_mul($cx, [$b]);
        }
        my $base_2 = int(sqrt($BASE)) - 1;
        my $n2 = $n - 2;
        #print STDERR "base_2: $base_2\n";
        while ($step < $n2 && $step < $base_2) {
            if ($cx->[0] == 0) {
                $zero_elements ++;
                shift @$cx;
            }
            my $b = $step * ($step + 1);
            $step += 2;
            $c->_mul($cx, [$b]);
        }
        # do what's left over
        while ($step <= $n) {
            $c->_mul($cx, [$step]);
            $step++;
            if ($cx->[0] == 0) {
                $zero_elements ++;
                shift @$cx;
            }
        }
    }
    # multiply in the zeros again
    unshift @$cx, (0) x $zero_elements;
    $cx;                        # return result
}

sub _log_int {
    # calculate integer log of $x to base $base
    # ref to array, ref to array - return ref to array
    my ($c, $x, $base) = @_;

    # X == 0 => NaN
    return if @$x == 1 && $x->[0] == 0;

    # BASE 0 or 1 => NaN
    return if @$base == 1 && $base->[0] < 2;

    # X == 1 => 0 (is exact)
    if (@$x == 1 && $x->[0] == 1) {
        @$x = 0;
        return $x, 1;
    }

    my $cmp = $c->_acmp($x, $base);

    # X == BASE => 1 (is exact)
    if ($cmp == 0) {
        @$x = 1;
        return $x, 1;
    }

    # 1 < X < BASE => 0 (is truncated)
    if ($cmp < 0) {
        @$x = 0;
        return $x, 0;
    }

    my $x_org = $c->_copy($x);  # preserve x

    # Compute a guess for the result based on:
    # $guess = int ( length_in_base_10(X) / ( log(base) / log(10) ) )
    my $len = $c->_len($x_org);
    my $log = log($base->[-1]) / log(10);

    # for each additional element in $base, we add $BASE_LEN to the result,
    # based on the observation that log($BASE, 10) is BASE_LEN and
    # log(x*y) == log(x) + log(y):
    $log += (@$base - 1) * $BASE_LEN;

    # calculate now a guess based on the values obtained above:
    my $res = int($len / $log);

    @$x = $res;
    my $trial = $c->_pow($c->_copy($base), $x);
    my $acmp = $c->_acmp($trial, $x_org);

    # Did we get the exact result?

    return $x, 1 if $acmp == 0;

    # Too small?

    while ($acmp < 0) {
        $c->_mul($trial, $base);
        $c->_inc($x);
        $acmp = $c->_acmp($trial, $x_org);
    }

    # Too big?

    while ($acmp > 0) {
        $c->_div($trial, $base);
        $c->_dec($x);
        $acmp = $c->_acmp($trial, $x_org);
    }

    return $x, 1 if $acmp == 0;         # result is exact
    return $x, 0;                       # result is too small
}

# for debugging:
use constant DEBUG => 0;
my $steps = 0;
sub steps { $steps };

sub _sqrt {
    # square-root of $x in place
    # Compute a guess of the result (by rule of thumb), then improve it via
    # Newton's method.
    my ($c, $x) = @_;

    if (@$x == 1) {
        # fits into one Perl scalar, so result can be computed directly
        $x->[0] = int(sqrt($x->[0]));
        return $x;
    }
    my $y = $c->_copy($x);
    # hopefully _len/2 is < $BASE, the -1 is to always undershot the guess
    # since our guess will "grow"
    my $l = int(($c->_len($x)-1) / 2);

    my $lastelem = $x->[-1];    # for guess
    my $elems = @$x - 1;
    # not enough digits, but could have more?
    if ((length($lastelem) <= 3) && ($elems > 1)) {
        # right-align with zero pad
        my $len = length($lastelem) & 1;
        print "$lastelem => " if DEBUG;
        $lastelem .= substr($x->[-2] . '0' x $BASE_LEN, 0, $BASE_LEN);
        # former odd => make odd again, or former even to even again
        $lastelem = $lastelem / 10 if (length($lastelem) & 1) != $len;
        print "$lastelem\n" if DEBUG;
    }

    # construct $x (instead of $c->_lsft($x, $l, 10)
    my $r = $l % $BASE_LEN;     # 10000 00000 00000 00000 ($BASE_LEN=5)
    $l = int($l / $BASE_LEN);
    print "l =  $l " if DEBUG;

    splice @$x, $l;              # keep ref($x), but modify it

    # we make the first part of the guess not '1000...0' but int(sqrt($lastelem))
    # that gives us:
    # 14400 00000 => sqrt(14400) => guess first digits to be 120
    # 144000 000000 => sqrt(144000) => guess 379

    print "$lastelem (elems $elems) => " if DEBUG;
    $lastelem = $lastelem / 10 if ($elems & 1 == 1); # odd or even?
    my $g = sqrt($lastelem);
    $g =~ s/\.//;               # 2.345 => 2345
    $r -= 1 if $elems & 1 == 0; # 70 => 7

    # padd with zeros if result is too short
    $x->[$l--] = int(substr($g . '0' x $r, 0, $r+1));
    print "now ", $x->[-1] if DEBUG;
    print " would have been ", int('1' . '0' x $r), "\n" if DEBUG;

    # If @$x > 1, we could compute the second elem of the guess, too, to create
    # an even better guess. Not implemented yet. Does it improve performance?
    $x->[$l--] = 0 while ($l >= 0); # all other digits of guess are zero

    print "start x= ", $c->_str($x), "\n" if DEBUG;
    my $two = $c->_two();
    my $last = $c->_zero();
    my $lastlast = $c->_zero();
    $steps = 0 if DEBUG;
    while ($c->_acmp($last, $x) != 0 && $c->_acmp($lastlast, $x) != 0) {
        $steps++ if DEBUG;
        $lastlast = $c->_copy($last);
        $last = $c->_copy($x);
        $c->_add($x, $c->_div($c->_copy($y), $x));
        $c->_div($x, $two );
        print " x= ", $c->_str($x), "\n" if DEBUG;
    }
    print "\nsteps in sqrt: $steps, " if DEBUG;
    $c->_dec($x) if $c->_acmp($y, $c->_mul($c->_copy($x), $x)) < 0; # overshot?
    print " final ", $x->[-1], "\n" if DEBUG;
    $x;
}

sub _root {
    # Take n'th root of $x in place.

    my ($c, $x, $n) = @_;

    # Small numbers.

    if (@$x == 1 && @$n == 1) {
        # Result can be computed directly. Adjust initial result for numerical
        # errors, e.g., int(1000**(1/3)) is 2, not 3.
        my $y = int($x->[0] ** (1 / $n->[0]));
        my $yp1 = $y + 1;
        $y = $yp1 if $yp1 ** $n->[0] == $x->[0];
        $x->[0] = $y;
        return $x;
    }

    # If x <= n, the result is always (truncated to) 1.

    if ((@$x > 1 || $x -> [0] > 0) &&           # if x is non-zero ...
        $c -> _acmp($x, $n) <= 0)               # ... and x <= n
    {
        my $one = $x -> _one();
        @$x = @$one;
        return $x;
    }

    # If $n is a power of two, take sqrt($x) repeatedly, e.g., root($x, 4) =
    # sqrt(sqrt($x)), root($x, 8) = sqrt(sqrt(sqrt($x))).

    my $b = $c -> _as_bin($n);
    if ($b =~ /0b1(0+)$/) {
        my $count = length($1);       # 0b100 => len('00') => 2
        my $cnt = $count;             # counter for loop
        unshift @$x, 0;               # add one element, together with one
                                      #   more below in the loop this makes 2
        while ($cnt-- > 0) {
            # 'Inflate' $x by adding one element, basically computing
            # $x * $BASE * $BASE. This gives us more $BASE_LEN digits for
            # result since len(sqrt($X)) approx == len($x) / 2.
            unshift @$x, 0;
            # Calculate sqrt($x), $x is now one element to big, again. In the
            # next round we make that two, again.
            $c -> _sqrt($x);
        }

        # $x is now one element too big, so truncate result by removing it.
        shift @$x;

        return $x;
    }

    my $DEBUG = 0;

    # Now the general case. This works by finding an initial guess. If this
    # guess is incorrect, a relatively small delta is chosen. This delta is
    # used to find a lower and upper limit for the correct value. The delta is
    # doubled in each iteration. When a lower and upper limit is found,
    # bisection is applied to narrow down the region until we have the correct
    # value.

    # Split x into mantissa and exponent in base 10, so that
    #
    #   x = xm * 10^xe, where 0 < xm < 1 and xe is an integer

    my $x_str = $c -> _str($x);
    my $xm    = "." . $x_str;
    my $xe    = length($x_str);

    # From this we compute the base 10 logarithm of x
    #
    #   log_10(x) = log_10(xm) + log_10(xe^10)
    #             = log(xm)/log(10) + xe
    #
    # and then the base 10 logarithm of y, where y = x^(1/n)
    #
    #   log_10(y) = log_10(x)/n

    my $log10x = log($xm) / log(10) + $xe;
    my $log10y = $log10x / $c -> _num($n);

    # And from this we compute ym and ye, the mantissa and exponent (in
    # base 10) of y, where 1 < ym <= 10 and ye is an integer.

    my $ye = int $log10y;
    my $ym = 10 ** ($log10y - $ye);

    # Finally, we scale the mantissa and exponent to incraese the integer
    # part of ym, before building the string representing our guess of y.

    if ($DEBUG) {
        print "\n";
        print "xm     = $xm\n";
        print "xe     = $xe\n";
        print "log10x = $log10x\n";
        print "log10y = $log10y\n";
        print "ym     = $ym\n";
        print "ye     = $ye\n";
        print "\n";
    }

    my $d = $ye < 15 ? $ye : 15;
    $ym *= 10 ** $d;
    $ye -= $d;

    my $y_str = sprintf('%.0f', $ym) . "0" x $ye;
    my $y = $c -> _new($y_str);

    if ($DEBUG) {
        print "ym     = $ym\n";
        print "ye     = $ye\n";
        print "\n";
        print "y_str  = $y_str (initial guess)\n";
        print "\n";
    }

    # See if our guess y is correct.

    my $trial = $c -> _pow($c -> _copy($y), $n);
    my $acmp  = $c -> _acmp($trial, $x);

    if ($acmp == 0) {
        @$x = @$y;
        return $x;
    }

    # Find a lower and upper limit for the correct value of y. Start off with a
    # delta value that is approximately the size of the accuracy of the guess.

    my $lower;
    my $upper;

    my $delta = $c -> _new("1" . ("0" x $ye));
    my $two   = $c -> _two();

    if ($acmp < 0) {
        $lower = $y;
        while ($acmp < 0) {
            $upper = $c -> _add($c -> _copy($lower), $delta);

            if ($DEBUG) {
                print "lower  = $lower\n";
                print "upper  = $upper\n";
                print "delta  = $delta\n";
                print "\n";
            }
            $acmp  = $c -> _acmp($c -> _pow($c -> _copy($upper), $n), $x);
            if ($acmp == 0) {
                @$x = @$upper;
                return $x;
            }
            $delta = $c -> _mul($delta, $two);
        }
    }

    elsif ($acmp > 0) {
        $upper = $y;
        my $zero = $c -> _zero();
        while ($acmp > 0) {
            if ($c -> _acmp($upper, $delta) <= 0) {
                $lower = $c -> _zero();
                last;
            }
            $lower = $c -> _sub($c -> _copy($upper), $delta);

            if ($DEBUG) {
                print "lower  = $lower\n";
                print "upper  = $upper\n";
                print "delta  = $delta\n";
                print "\n";
            }
            $acmp  = $c -> _acmp($c -> _pow($c -> _copy($lower), $n), $x);
            if ($acmp == 0) {
                @$x = @$lower;
                return $x;
            }
            $delta = $c -> _mul($delta, $two);
        }
    }

    # Use bisection to narrow down the interval.

    my $one = $c -> _one();
    {

        $delta = $c -> _sub($c -> _copy($upper), $lower);
        if ($c -> _acmp($delta, $one) <= 0) {
            @$x = @$lower;
            return $x;
        }

        if ($DEBUG) {
            print "lower  = $lower\n";
            print "upper  = $upper\n";
            print "delta   = $delta\n";
            print "\n";
        }

        $delta = $c -> _div($delta, $two);
        my $middle = $c -> _add($c -> _copy($lower), $delta);

        $acmp  = $c -> _acmp($c -> _pow($c -> _copy($middle), $n), $x);
        if ($acmp < 0) {
            $lower = $middle;
        } elsif ($acmp > 0) {
            $upper = $middle;
        } else {
            @$x = @$middle;
            return $x;
        }

        redo;
    }

    $x;
}

##############################################################################
# binary stuff

sub _and {
    my ($c, $x, $y) = @_;

    # the shortcut makes equal, large numbers _really_ fast, and makes only a
    # very small performance drop for small numbers (e.g. something with less
    # than 32 bit) Since we optimize for large numbers, this is enabled.
    return $x if $c->_acmp($x, $y) == 0; # shortcut

    my $m = $c->_one();
    my ($xr, $yr);
    my $mask = $AND_MASK;

    my $x1 = $c->_copy($x);
    my $y1 = $c->_copy($y);
    my $z  = $c->_zero();

    use integer;
    until ($c->_is_zero($x1) || $c->_is_zero($y1)) {
        ($x1, $xr) = $c->_div($x1, $mask);
        ($y1, $yr) = $c->_div($y1, $mask);

        $c->_add($z, $c->_mul([ 0 + $xr->[0] & 0 + $yr->[0] ], $m));
        $c->_mul($m, $mask);
    }

    @$x = @$z;
    return $x;
}

sub _xor {
    my ($c, $x, $y) = @_;

    return $c->_zero() if $c->_acmp($x, $y) == 0; # shortcut (see -and)

    my $m = $c->_one();
    my ($xr, $yr);
    my $mask = $XOR_MASK;

    my $x1 = $c->_copy($x);
    my $y1 = $c->_copy($y);      # make copy
    my $z  = $c->_zero();

    use integer;
    until ($c->_is_zero($x1) || $c->_is_zero($y1)) {
        ($x1, $xr) = $c->_div($x1, $mask);
        ($y1, $yr) = $c->_div($y1, $mask);
        # make ints() from $xr, $yr (see _and())
        #$b = 1; $xrr = 0; foreach (@$xr) { $xrr += $_ * $b; $b *= $BASE; }
        #$b = 1; $yrr = 0; foreach (@$yr) { $yrr += $_ * $b; $b *= $BASE; }
        #$c->_add($x, $c->_mul($c->_new($xrr ^ $yrr)), $m) );

        $c->_add($z, $c->_mul([ 0 + $xr->[0] ^ 0 + $yr->[0] ], $m));
        $c->_mul($m, $mask);
    }
    # the loop stops when the shorter of the two numbers is exhausted
    # the remainder of the longer one will survive bit-by-bit, so we simple
    # multiply-add it in
    $c->_add($z, $c->_mul($x1, $m) ) if !$c->_is_zero($x1);
    $c->_add($z, $c->_mul($y1, $m) ) if !$c->_is_zero($y1);

    @$x = @$z;
    return $x;
}

sub _or {
    my ($c, $x, $y) = @_;

    return $x if $c->_acmp($x, $y) == 0; # shortcut (see _and)

    my $m = $c->_one();
    my ($xr, $yr);
    my $mask = $OR_MASK;

    my $x1 = $c->_copy($x);
    my $y1 = $c->_copy($y);      # make copy
    my $z  = $c->_zero();

    use integer;
    until ($c->_is_zero($x1) || $c->_is_zero($y1)) {
        ($x1, $xr) = $c->_div($x1, $mask);
        ($y1, $yr) = $c->_div($y1, $mask);
        # make ints() from $xr, $yr (see _and())
        #    $b = 1; $xrr = 0; foreach (@$xr) { $xrr += $_ * $b; $b *= $BASE; }
        #    $b = 1; $yrr = 0; foreach (@$yr) { $yrr += $_ * $b; $b *= $BASE; }
        #    $c->_add($x, $c->_mul(_new( $c, ($xrr | $yrr) ), $m) );

        $c->_add($z, $c->_mul([ 0 + $xr->[0] | 0 + $yr->[0] ], $m));
        $c->_mul($m, $mask);
    }
    # the loop stops when the shorter of the two numbers is exhausted
    # the remainder of the longer one will survive bit-by-bit, so we simple
    # multiply-add it in
    $c->_add($z, $c->_mul($x1, $m) ) if !$c->_is_zero($x1);
    $c->_add($z, $c->_mul($y1, $m) ) if !$c->_is_zero($y1);

    @$x = @$z;
    return $x;
}

sub _as_hex {
    # convert a decimal number to hex (ref to array, return ref to string)
    my ($c, $x) = @_;

    # fits into one element (handle also 0x0 case)
    return sprintf("0x%x", $x->[0]) if @$x == 1;

    my $x1 = $c->_copy($x);

    my $es = '';
    my ($xr, $h, $x10000);
    if ($] >= 5.006) {
        $x10000 = [ 0x10000 ];
        $h = 'h4';
    } else {
        $x10000 = [ 0x1000 ];
        $h = 'h3';
    }
    while (@$x1 != 1 || $x1->[0] != 0) # _is_zero()
    {
        ($x1, $xr) = $c->_div($x1, $x10000);
        $es .= unpack($h, pack('V', $xr->[0]));
    }
    $es = reverse $es;
    $es =~ s/^[0]+//;           # strip leading zeros
    '0x' . $es;                 # return result prepended with 0x
}

sub _as_bin {
    # convert a decimal number to bin (ref to array, return ref to string)
    my ($c, $x) = @_;

    # fits into one element (and Perl recent enough), handle also 0b0 case
    # handle zero case for older Perls
    if ($] <= 5.005 && @$x == 1 && $x->[0] == 0) {
        my $t = '0b0';
        return $t;
    }
    if (@$x == 1 && $] >= 5.006) {
        my $t = sprintf("0b%b", $x->[0]);
        return $t;
    }
    my $x1 = $c->_copy($x);

    my $es = '';
    my ($xr, $b, $x10000);
    if ($] >= 5.006) {
        $x10000 = [ 0x10000 ];
        $b = 'b16';
    } else {
        $x10000 = [ 0x1000 ];
        $b = 'b12';
    }
    while (!(@$x1 == 1 && $x1->[0] == 0)) # _is_zero()
    {
        ($x1, $xr) = $c->_div($x1, $x10000);
        $es .= unpack($b, pack('v', $xr->[0]));
    }
    $es = reverse $es;
    $es =~ s/^[0]+//;           # strip leading zeros
    '0b' . $es;                 # return result prepended with 0b
}

sub _as_oct {
    # convert a decimal number to octal (ref to array, return ref to string)
    my ($c, $x) = @_;

    # fits into one element (handle also 0 case)
    return sprintf("0%o", $x->[0]) if @$x == 1;

    my $x1 = $c->_copy($x);

    my $es = '';
    my $xr;
    my $x1000 = [ 0100000 ];
    while (@$x1 != 1 || $x1->[0] != 0) # _is_zero()
    {
        ($x1, $xr) = $c->_div($x1, $x1000);
        $es .= reverse sprintf("%05o", $xr->[0]);
    }
    $es = reverse $es;
    $es =~ s/^0+//;             # strip leading zeros
    '0' . $es;                  # return result prepended with 0
}

sub _from_oct {
    # convert a octal number to decimal (string, return ref to array)
    my ($c, $os) = @_;

    # for older Perls, play safe
    my $m = [ 0100000 ];
    my $d = 5;                  # 5 digits at a time

    my $mul = $c->_one();
    my $x = $c->_zero();

    my $len = int((length($os) - 1) / $d);      # $d digit parts, w/o the '0'
    my $val;
    my $i = -$d;
    while ($len >= 0) {
        $val = substr($os, $i, $d);             # get oct digits
        $val = CORE::oct($val);
        $i -= $d;
        $len --;
        my $adder = [ $val ];
        $c->_add($x, $c->_mul($adder, $mul)) if $val != 0;
        $c->_mul($mul, $m) if $len >= 0;        # skip last mul
    }
    $x;
}

sub _from_hex {
    # convert a hex number to decimal (string, return ref to array)
    my ($c, $hs) = @_;

    my $m = $c->_new(0x10000000); # 28 bit at a time (<32 bit!)
    my $d = 7;                    # 7 digits at a time
    my $mul = $c->_one();
    my $x = $c->_zero();

    my $len = int((length($hs) - 2) / $d); # $d digit parts, w/o the '0x'
    my $val;
    my $i = -$d;
    while ($len >= 0) {
        $val = substr($hs, $i, $d);     # get hex digits
        $val =~ s/^0x// if $len == 0; # for last part only because
        $val = CORE::hex($val);       # hex does not like wrong chars
        $i -= $d;
        $len --;
        my $adder = [ $val ];
        # if the resulting number was to big to fit into one element, create a
        # two-element version (bug found by Mark Lakata - Thanx!)
        if (CORE::length($val) > $BASE_LEN) {
            $adder = $c->_new($val);
        }
        $c->_add($x, $c->_mul($adder, $mul)) if $val != 0;
        $c->_mul($mul, $m) if $len >= 0; # skip last mul
    }
    $x;
}

sub _from_bin {
    # convert a hex number to decimal (string, return ref to array)
    my ($c, $bs) = @_;

    # instead of converting X (8) bit at a time, it is faster to "convert" the
    # number to hex, and then call _from_hex.

    my $hs = $bs;
    $hs =~ s/^[+-]?0b//;                                # remove sign and 0b
    my $l = length($hs);                                # bits
    $hs = '0' x (8 - ($l % 8)) . $hs if ($l % 8) != 0;  # padd left side w/ 0
    my $h = '0x' . unpack('H*', pack ('B*', $hs));      # repack as hex

    $c->_from_hex($h);
}

##############################################################################
# special modulus functions

sub _modinv {
    # modular multiplicative inverse
    my ($c, $x, $y) = @_;

    # modulo zero
    if ($c->_is_zero($y)) {
        return undef, undef;
    }

    # modulo one
    if ($c->_is_one($y)) {
        return $c->_zero(), '+';
    }

    my $u = $c->_zero();
    my $v = $c->_one();
    my $a = $c->_copy($y);
    my $b = $c->_copy($x);

    # Euclid's Algorithm for bgcd(), only that we calc bgcd() ($a) and the result
    # ($u) at the same time. See comments in BigInt for why this works.
    my $q;
    my $sign = 1;
    {
        ($a, $q, $b) = ($b, $c->_div($a, $b));          # step 1
        last if $c->_is_zero($b);

        my $t = $c->_add(                               # step 2:
                         $c->_mul($c->_copy($v), $q),   #  t =   v * q
                         $u);                           #      + u
        $u = $v;                                        #  u = v
        $v = $t;                                        #  v = t
        $sign = -$sign;
        redo;
    }

    # if the gcd is not 1, then return NaN
    return (undef, undef) unless $c->_is_one($a);

    ($v, $sign == 1 ? '+' : '-');
}

sub _modpow {
    # modulus of power ($x ** $y) % $z
    my ($c, $num, $exp, $mod) = @_;

    # a^b (mod 1) = 0 for all a and b
    if ($c->_is_one($mod)) {
        @$num = 0;
        return $num;
    }

    # 0^a (mod m) = 0 if m != 0, a != 0
    # 0^0 (mod m) = 1 if m != 0
    if ($c->_is_zero($num)) {
        if ($c->_is_zero($exp)) {
            @$num = 1;
        } else {
            @$num = 0;
        }
        return $num;
    }

    #  $num = $c->_mod($num, $mod);   # this does not make it faster

    my $acc = $c->_copy($num);
    my $t = $c->_one();

    my $expbin = $c->_as_bin($exp);
    $expbin =~ s/^0b//;
    my $len = length($expbin);
    while (--$len >= 0) {
        if (substr($expbin, $len, 1) eq '1') { # is_odd
            $t = $c->_mul($t, $acc);
            $t = $c->_mod($t, $mod);
        }
        $acc = $c->_mul($acc, $acc);
        $acc = $c->_mod($acc, $mod);
    }
    @$num = @$t;
    $num;
}

sub _gcd {
    # Greatest common divisor.

    my ($c, $x, $y) = @_;

    # gcd(0, 0) = 0
    # gcd(0, a) = a, if a != 0

    if (@$x == 1 && $x->[0] == 0) {
        if (@$y == 1 && $y->[0] == 0) {
            @$x = 0;
        } else {
            @$x = @$y;
        }
        return $x;
    }

    # Until $y is zero ...

    until (@$y == 1 && $y->[0] == 0) {

        # Compute remainder.

        $c->_mod($x, $y);

        # Swap $x and $y.

        my $tmp = $c->_copy($x);
        @$x = @$y;
        $y = $tmp;              # no deref here; that would modify input $y
    }

    return $x;
}

1;

=pod

=head1 NAME

Math::BigInt::Calc - Pure Perl module to support Math::BigInt

=head1 SYNOPSIS

    # to use it with Math::BigInt
    use Math::BigInt lib => 'Calc';

    # to use it with Math::BigFloat
    use Math::BigFloat lib => 'Calc';

    # to use it with Math::BigRat
    use Math::BigRat lib => 'Calc';

=head1 DESCRIPTION

Math::BigInt::Calc inherits from Math::BigInt::Lib.

In this library, the numbers are represented in base B = 10**N, where N is the
largest possible value that does not cause overflow in the intermediate
computations. The base B elements are stored in an array, with the least
significant element stored in array element zero. There are no leading zero
elements, except a single zero element when the number is zero.

For instance, if B = 10000, the number 1234567890 is represented internally
as [7890, 3456, 12].

=head1 SEE ALSO

L<Math::BigInt::Lib> for a description of the API.

Alternative libraries L<Math::BigInt::FastCalc>, L<Math::BigInt::GMP>, and
L<Math::BigInt::Pari>.

Some of the modules that use these libraries L<Math::BigInt>,
L<Math::BigFloat>, and L<Math::BigRat>.

=cut

Youez - 2016 - github.com/yon3zu
LinuXploit